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Abstract A continuum model for two-phase (fluid/parti-
cle) flow induced by natural convection is developed and
applied to the problem of steady natural convention flow
of a particulate suspension through an infinitely long
channel. The walls of the channel are maintained at con-
stant but different temperatures. The two-phase model
accounts for particle-phase viscous effects. Boundary
conditions borrowed from rarefied gas dynamics are em-
ployed for the particle-phase wall conditions. Various
closed-form solutions for different special cases are ob-
tained. A parametric study of the physical parameters in-
volved in the problem are performed to illustrate the
influence of these parameters on the flow and heat transfer
aspects of the problem.

List of Symbols

a Radius of spherical particles
c Fluid-phase specific heat at constant pressure
cp Particle-phase specific heat at constant pressure
g Gravitational acceleration
Gr Grashof number
h Channel width
H Dimensionless buoyancy parameter
k Fluid-phase thermal conductivity
m Particulate mass
N Interphase momentum transfer coefficient
NT Interphase heat transfer coefficient
P Fluid-phase hydrostatic pressure
Rs Slip Reynolds number
Pr Fluid-phase Prandtl number
S Dimensionless particle-phase wall slip coefficient
t time
T Fluid-phase temperature
Tp Particle-phase temperature
u Fluid-phase dimensionless velocity
up Particle-phase dimensionless velocity
U Fluid-phase velocity
Up Particle-phase velocity
V Fluid-phase velocity vector

Vp Particle-phase velocity vector
Vs Slip velocity
x, y Cartesian coordinates

Greek Symbols
a Velocity inverse Stokes number
b Viscosity ratio
b� Thermal expansion coefficient
c Specific heat ratio
e Temperature inverse Stokes number
g Dimensionless y-coordinate
h Dimensionless fluid-phase temperature
j Particle loading
l Fluid-phase dynamic viscosity
lp Particle-phase dynamic viscosity
q Fluid-phase density
qp Particle-phase density
x Particle-phase wall slip coefficient

1
Introduction
Two-phase (fluid-particle) natural convection flow repre-
sents one of the most interesting and challenging areas of
research in heat transfer. Such flows are found in a wide
range of applications including processes in the chemical
and food industries, solar collectors where a particulate
suspension is used to enhance absorption of radiation,
cooling of electronic equipments, cooling of nuclear re-
actors, and heating of buildings via storage walls (trombe
walls). In general, all applications of single-phase flow are
valid for two-phase particulate suspension flow because
the nature of real life dictates the presence of contami-
nating solid particles in fluids. Inspite of this fact, all
research on natural convection flows within vertical
parallel-plate channels are done only for a single phase.
For example, Elenbass (1942) analyzed heat dissipation
effects of parallel plates by free convection. Aung et al.
(1972) investigated the development of laminar free
convection between vertical flat plates with asymmetric
heating. Akbari and Borgers (1979) studied laminar
natural convection heat transfer between the channel
surfaces of a trombe wall. Many other works can be found
in the book by Gebhart et al. (1988).

On the other hand, very little work have been reported
on natural convection flow of a particle-fluid suspension
over and through different geometries. Recently, Cham-
kha and Ramadan (1998) and Ramadan and Chamkha
(1999) have developed a mathematical two-phase model
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(fluid/particle) which accounts for the presence of ther-
mal buoyancy effects and reported some analytical and
numerical results for natural convection flow of a two-
phase particulate suspension over an infinite vertical
plate. They found that increases in either of the particle
loading or the wall particulate slip coefficient caused
reductions in the velocities of both phases. Also, Okada
and Suzuki (1997) have considered buoyancy-induced
flow of a two-phase suspension in an enclosure. However,
to the best of the authors’ knowledge, there is no pre-
vious work reported on natural convection flow of a
particulate suspension through a vertical channel. Thus,
there is a definite need for investigation of such a
problem. Hence, the objective of this research is to per-
form an analytical investigation on steady natural con-
vection laminar flow of a particulate suspension in an
infinite vertical parallel-plate channel.

2
Governing Equations
In order to investigate the characteristics of two-phase
natural convection flow in channels, one must start from the
basic equations. These are the fluid-phase continuity
equation, fluid-phase balance of linear momentum equa-
tion, fluid-phase balance of energy equation, particle-phase
continuity equation, particle-phase balance of linear mo-
mentum equation and the particle-phase balance of energy
equation. These balance laws can be written in the following
vector form (see Marble, 1970 and Drew, 1983) as:

@tqþr � ðqVÞ ¼ 0 ð1Þ

qð@tVþ V � rVÞ ¼ �rPþr � ðlrVÞ
� qpNðV� VpÞ þ qg ð2Þ

qcð@tTþ V � rTÞ ¼ r � ðkrTÞ þ qpcpNTðTp � TÞ ð3Þ

@tqp þr � ðqpVpÞ ¼ 0 ð4Þ

qpð@tVpþVp �rVpÞ¼r� ðlprVpÞþqpNðV�VpÞþqpg

ð5Þ

qpcpð@tTpþVp �rTpÞ¼�qpcpNTðTp�TÞ ð6Þ

where all symbols are defined in the List of Symbols section.
It should be mentioned here that the slip Reynolds number
Rs=2qaVs/l (where Vs = V – Vp) is assumed to be small so
that the interphase force is approximated by Stokes drag
force on a sphere. In Equations (2) and (5), the interphase
momentum transfer coefficient N=6pal/m.

This study considers steady, homogeneous with dis-
crete particles, one dimensional, incompressible, laminar,
natural convection fully developed two-phase (fluid-par-
ticle) flow in an impermeable parallel-plate channel. The
walls of the channel are assumed to be infinitely long.
This implies that the dependence of the variables on the
x-direction will be negligible compared with that of the
y-direction (see Fig. 1). Therefore, all dependent variables

in equations (1) through (6) will only be functions of y as
follows:

�@xPþ l@yyU� qpNðU� UpÞ � qg ¼ 0 ð7Þ

k@yyTþ qpcpNTðTp � TÞ ¼ 0 ð8Þ

lp@yyUp þ qpNðU� UpÞ � qpg ¼ 0 ð9Þ

qpcpNTðTp � TÞ ¼ 0 ð10Þ

It should be noted that the continuity equations of both
phases are identically satisfied.

The pressure gradient can be eliminated from the linear
momentum equation of the fluid phase by evaluating the
governing equations at a reference point within the
channel. Let ‘‘o’’ be a reference point within the channel
such that U = 0, T = To, q= qo, l= lo, Up = Upo, Tp = Tpo,
qp = qpo and lp = lpo. Evaluating the governing equations
at this reference point and employing the Boussinesq ap-
proximation gives:

qpo=qogþlo=qo@yyU�qpo=qoNðU�UpÞþb�gðT�ToÞ¼0

ð11Þ

where b� is the volumetric expansion coefficient. The
linear momentum equation of the fluid phase, equa-
tion (7), will now be replaced by equation (11) in the
governing equations.

Each of equations (7), (8) and (9) requires
two boundary conditions to solve them completely.
The physical boundary conditions for this problem
are:

Uð0Þ ¼ UðhÞ ¼ 0; Tð0Þ ¼ T1; TðhÞ ¼ T2 ð12a� dÞ

Fig. 1. Problem Definition
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Upð0Þ ¼ x@yUpð0Þ � g=N;

UpðhÞ ¼ �x@yUpðhÞ � g=N

Tpð0Þ ¼ T1; TpðhÞ ¼ T2

ð12e� hÞ

where h is the channel width, T1 is the channel wall tem-
perature at y = 0, T2 is the channel wall temperature at y = h
and x is the particle-phase slip coefficient. Equations (12a)
and (12b) indicate no slip conditions for the fluid phase at
the walls of the channel. Equations (12c) and (12d) suggest
that the fluid temperatures at the walls of the channel are
some constant values T1 and T2 such that T2 > T1. Equa-
tions (12e) and (12f) express proposed wall boundary
conditions for the particle phase at the walls of the channel.
Equations (12g) and (12h) indicate that the particle phase is
in thermal equilibrium with the fluid phase at the walls. It
should be mentioned herein that the wall boundary
conditions for the particulate phase are poorly understood
at present. However, there is an experimental evidence
that particles tend to slip at a boundary. Therefore, two
idealized conditions will be considered. These are the
no-slip condition (x = 0) and the perfect slip condition
(xfi ¥: ¶yUp(0,t) = ¶yUp(h,t) = 0). It is expected that the
actual behavior would be somewhere between these two
extremes.

The formulation of the value problem of an infinite
vertical parallel-plate channel is now completed. In order
to solve this problem, it is convenient to non-dimension-
alize the governing equations and conditions. This can be
accomplished by using the following parameters:

y ¼ hg; U ¼ ðl=qhÞu; Up ¼ ðl=qhÞup;

T ¼ ðT2 � ToÞhþ To; To ¼ ðT1 þ T2Þ=2;

Tp ¼ ðT2 � ToÞhp þ To ð13Þ

where g is the dimensionless coordinate, u and up are the
dimensionless fluid- and particle-phase velocities,
respectively, and h and hp are the dimensionless fluid- and
particle-phase temperatures, respectively. After perform-
ing the mathematical operations, the resulting dimen-
sionless governing equations can be written as:

D2u� ajðu� upÞ þ Grhþ jH ¼ 0 ð14Þ

ð1=PrÞD2hþ jceðhp � hÞ ¼ 0 ð15Þ

bD2up þ aðu� upÞ �H ¼ 0 ð16Þ

eðhp � hÞ ¼ 0 ð17Þ

where D2 denotes a second derivative operator with
respect to g, a= h2Nq/ l, j= qp/q, Gr = g b� h3q2(T2 – To)/l2,
H = gh3q2/l2, b= lp/(jl), Pr = lc/k, c= cp/c and
e= qNTh2/l are the momentum inverse Stokes number, the
particle loading, the Grashof number, buoyancy parameter,
the viscosity ratio, the Prandtl number, the specific heat
ratio, and the temperature inverse Stokes number,
respectively.

The dimensionless boundary conditions are:

uð0Þ ¼ uð1Þ ¼ 0; hð0Þ ¼ �1; hð1Þ ¼ 1 ð18a� dÞ

upð0Þ ¼ SDupð0Þ � H=a; upð1Þ ¼ �SDupð1Þ � H=a

hpð0Þ ¼ �1; hpð1Þ ¼ 1 ð18e� hÞ

where S = x/h is the dimensionless particle-phase
slip parameter. It should be mentioned that when
b= 0 (inviscid particle phase), equations (18e, f) are
ignored.

3
Analytical Results and Discussion

Inviscid Particle Phase
For an inviscid particle phase (b = 0), equation (16)
implies that :

upðgÞ ¼ uðgÞ � H=a ð19Þ

which indicates that the particle-phase velocity is the same
as the fluid-phase velocity except that it is shifted by the
factor H/a below the fluid-phase velocity.

Equation (17) implies that:

hpðgÞ ¼ hðgÞ ð20Þ

By substituting equation (20) into equation (15) one
obtains :

D2h ¼ 0 ð21Þ

The solution of this simple second-order differential
equation, which satisfies the boundary conditions (18c, d),
is:

hðgÞ ¼ 2g� 1 ð22Þ

This indicates that the temperature of both phases has a
linear shape of pure conduction. Again, substituting
equations (19) and (22) into equation (14) gives:

D2u ¼ �2Grgþ Gr ð23Þ

The solution of this second-order differential equation,
which satisfies the boundary conditions (18a,b), is:

uðgÞ ¼ �Grðg� 3g2 þ 2g3Þ=6 ð24Þ

This shows that the fluid-phase velocity profile has a cubic
relation with the normal distance. The corresponding so-
lution for up(g) is obtained by substituting equation (24)
into equation (19).

Comparisons with previously published work for the
case of a clear fluid (single phase) can be made.
Equations (22) and (24) are identical to those reported
by Aung (1972) without the Gr factor. On the other
hand, if the boundary condition of the fluid-phase
dimensionless temperature was put equal to –1 at g= –1,
instead of g= 0 in the present problem, then the predicted
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results are essentially identical to those reported by
White (1991).

4
Viscous Particle Phase:
In the presence of a particle-phase viscosity (b „ 0),
equations (14) and (15) can be rearranged and rewritten in
matrix form as

D2 � ja ja
a=b D2 � a=b

� �
u
up

� �
¼ �2Grgþ Gr� jH

H=b

� �
ð25Þ

This matrix implies that:

½D4 � ða=bþ jaÞD2�u ¼ ð2Gra=bÞg� Gra=b ð26Þ

½D4 � ða=bþ jaÞD2�up ¼ ð2Gra=bÞg� Gra=b ð27Þ

The general solutions of the above equations are:

uðgÞ¼c1þc2gþc3efgþc4e�fgþGrðg2=2�g3=3Þ=ð1þbjÞ
ð28Þ

upðgÞ¼d1þd2gþd3efgþd4e�fgþGrðg2=2�g3=3Þ=ð1þbjÞ
ð29Þ

where f is given by

f¼ða=bþjaÞ1=2 ð30Þ

The relationships between the c’s and d’s are:

c1 ¼ d1 þH=a� bGr=ðaþ bjaÞ ð31Þ

c2 ¼ d2 þ 2bGr=ðaþ bjaÞ ð32Þ

c3 ¼ ð1� f2b=aÞd3 ð33Þ

c4 ¼ ð1� f2b=aÞd4 ð34Þ

Now, by substituting these relations into equation (26)
with the assumption that

w ¼ 1� f2b=a ð35Þ

gives the following general solution

uðgÞ¼H=a�bGr=ðaþbjaÞþd1þðd2þ2bGr=ðaþbjaÞÞg
þwd3efgþwd4e�fgþGrðg2=2�g3=3Þ=ð1þbjÞ

ð36Þ

In order to determine the constant d’s, the boundary
conditions (18a,b) and (18e,f) must be applied with
equations (28) and (35) to give the following equations :

d1 þ wd3 þ wd4 ¼ bGr=ðaþ bjaÞ � H=a ð37Þ

d1 þ d2 þ wefd3 þ we�fd4 ¼ �Gr=ð6þ 6bjÞ
� bGr=ðaþ bjaÞ �H=a ð38Þ

d1 � Sd2 þ ð1� SfÞd3 þ ð1þ SfÞd4 ¼ �H=a ð39Þ

d1 þ ð1þ SÞd2 þ ð1þ SfÞefd3 þ ð1� SfÞe�fd4

¼ �Gr=ð6þ 6bjÞ �H=a ð40Þ

The above equations (36 to 39) determine d1, d2, d3 and d4.
This concludes the solution and shows the effects of the
slip coefficient S on the velocity profiles of both the fluid
and particle phases within the range 0 £ S < ¥. Moreover,
if S fi ¥, then equations (38) and (39) will be replaced by:

d2 þ fd3 � fd4 ¼ 0 ð41Þ

d2 þ fefd3 � fe�fd4 ¼ 0 ð42Þ

Some results for the velocity profiles of both phases (u and
up) based on the closed-form solutions for the flow

Fig. 2. Effects of Gr on FluidPhase Velocity Profiles

Fig. 3. Effects of Gr on Particle-Phase Velocity Profiles
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through a vertical channel are presented in Figures 2
through 10. These results are presented to illustrate the
influence of the Grashof number Gr, the viscosity ratio b,
the particle wall slip coefficient S, the inverse Stokes
number a and the particle loading j, respectively.

Figures 2 and 3 display the effects of increasing the
Grashof number Gr on the velocity fields of both the fluid
and particle phases, respectively. Increases in the values of
Gr have the tendency to increase the thermal buoyancy
effect represented by the Grh term of equation (14). This
gives rise to an increase in the induced flow of both phases
along the hot wall as shown in Figures 2 and 3. A reversed
flow situation near the cold wall occurs and is increased as
the flow is enhanced near the hot wall in a symmetrical
fashion.

Numerical evaluations of the flow solutions given by
equations (28) and (35) for various values of the viscosity
ratio b are illustrated graphically in Figures 4 and 5. Fig-
ures 4 and 5 depict the effect of the ratio of the particle-to-
fluid-phase viscosity b on the velocity profiles of both
phases. Increases in the viscosity ratio b have the tendency
to increase the magnitude of frictional effects for both
phases in comparison with the buoyancy effects. This has
the effect of decreasing the velocity of both phases as
clearly depicted in Figures 4 and 5. In addition, Figure 5

shows that increases in the values of b have the tendency
to flatten the particle-phase velocity profiles. Moreover,
because the energy equations of both phases are uncou-
pled from the momentum equations, the temperature
profiles for both phases are unaffected by the changes in
the values of b.

Figure 6 illustrates the influence of the particle-phase
wall slip coefficient S on the particle-phase velocity. In
general, as the particle-phase wall slip increases, it be-
comes easier for the carrier fluid to move it causing the
particle-phase velocity to increase. In addition, the slip
coefficient S seems to have no significant effect on the
fluid-phase velocity and no effect on both fluid- and par-
ticle-phases temperature. This was observed from results
not presented herein for brevity.

In order to elucidate the influence of the inverse Stokes
number a, graphical representation of u and up are ob-
tained and presented in Figures 7 and 8. As a increases,
the interphase momentum transfer due to the drag
mechanism between the phases increases causing the flu-
id-phase velocity to decrease and the particle-phase ve-
locity to increase as is evident from Figures 7 and 8.
According to equations (28) through (35), the limit a fi ¥
will cause up(g) to approach u(g) and equilibrium condi-
tions between the phases occur in which both phases

Fig. 4. Effects of b on Fluid-Phase Velocity Profiles

Fig. 5. Effects of b on Particle-Phase Velocity Profiles

Fig. 6. Effects of S on Particle-Phase Velocity Profiles

Fig. 7. Effects of a on Fluid-Phase Velocity Profiles
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move together with the same velocity as long as the
boundary conditions of both phases at the walls are the
same.

Figures 9 and 10 show representative velocity profiles
for the fluid and particle phases (u and up) for various
values of the particle loading j, respectively. Physically

speaking, as the particle concentration increases, the drag
force between the phases increases causing a slower mo-
tion of the fluid. This produces a reduction in the particle-
phase velocity since the particle phase is being dragged
along by the carrier fluid. In fact, increases in the values of
j have the tendency to flatten the fluid- and particle-phase
velocity profiles. These facts are clearly illustrated in Fig-
ures 9 and 10.

5
Conclusions
The mathematical modeling of natural convection flow of a
particulate suspension was formulated by stating the
conservation laws of mass, linear momentum, and energy
for both the fluid and particle phases. The governing
equations were non-dimensionlized and solved analyti-
cally for the problem of steady, laminar buoyancy-induced
fully developed two-phase flow through a vertical parallel-
plate channel with isothermal walls. Various closed-form
solutions were obtained. Representative results were
plotted to illustrate the influence of the physical parame-
ters on the solutions. A reverse (back) fluid and particle
flow situation near the cold wall was predicted and the
velocity profiles had a symmetrical distribution. An in-
crease in the values of the Grashof number increased the
thermal buoyancy effect which, consequently, increased
the flow of both phases along the hot wall. The reversed
flow near the cold wall was increased as the flow was en-
hanced near the hot wall in a symmetrical fashion. The
effect of increasing the values of the viscosity ratio was
found to increase the magnitude of the frictional effects for
both phases in comparison with the buoyancy effects. The
influence of increasing the values of the particle-phase slip
coefficient was predicted to increase the magnitude of the
particle-phase velocity. Increases in the velocity inverse
Stokes number had the effect of increasing the interphase
momentum transfer due to the drag mechanism between
the phases. This caused the magnitude of thefluid-phase
velocity to decrease and the magnitude of the particle-
phase velocity to increase. Increases in the particle con-
centration (particle loading) increased the drag force be-
tween the phases causing a slower motion of both the fluid
and particle phases. It is hoped that the results reported in
this research will serve as a check for further theoretical
modeling and a stimulus for experimental work on this
problem.
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