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Fully Developed Mixed Convection of a Micropolar Fluid
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A theoretical study of the fully developed mixed convection flow of a mi-
cropolar fluid in a parallel plate vertical channel with an asymmetric wall tem-
perature distribution has been presented. Solutions of the governing equations
are obtained both analytically and numerically and it is shown that they are in
excellent agreement. A reverse flow is observed in some cases and is based on
the analytical solution. Criteria for the occurrence of this flow are presented.

* * *

Nomenclature

A, B constants;
g acceleration due to gravity;
h spacing between channel walls;
j microinertia density;
K non-dimensional material parameter;
n microrotation;
R wall temperature difference ratio;
T fluid temperature;
T0 temperature at the channel entrance;
T1 temperature of the cold wall (y = 0);
T2 temperature of the hot wall (y = h);
u axial velocity;
U0 velocity at the channel entrance;
x, y Cartesian coordinates;
β coefficient of thermal expansion;
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Fig. 1. Schematic diagram of the physical model.

γ spin-gradient viscosity;
κ vortex viscosity;
µ dynamic viscosity;
ρ density;
θ non-dimensional temperature.

Introduction

The theory of micropolar fluids and its extension to thermo-micropolar fluids was formulated
by Eringen [1,2] and has drawn considerable interest in recent years due to its practical application
in many fields. It can be used to study the behavior of exotic lubricants, colloidal suspensions or
polymeric additives, blood flow, liquid crystals and dirty oils, to name just a few practical applica-
tions of these fluids. A detailed review of the published papers on these fluids can be found in the
review article by Ariman et al. [3] and in the recent books by Łukaszewicz [4] and Eringen [5].

However, to the best of our knowledge, there exist only a little number of works published
covering forced, free and mixed convection flows of a micropolar fluid in a vertical channel. There-
fore, the purpose of this paper is to study the fully developed flow of a micropolar fluid in a mixed
convection between a parallel-plate vertical channel with asymmetric wall temperature distribution.
It is worth pointing out that for a Newtonian fluid this problem was studied in a series of papers by
Aung and Worku [6–8]. They assumed that the two walls of the channel are maintained at uniform
but not necessarily equal temperatures and this assumption will also be considered here. It is shown
that for a fixed value of the material parameterK the buoyancy effects are at largest adjacent to
heated wall and, therefore, velocities and microrotation profiles increase in near-wall regions with a
concomitant decrease elsewhere due to the fixed flow rate.
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1. Basic equations

Let us consider the laminar mixed convection flow of a micropolar fluid between two vertical
plates, the space between the plates beingh, as shown in Fig. 1. The flow is assumed to be steady
and fully developed, i. e., the transverse velocity is zero. It is also assumed that the fluid has a
uniform velocityU0 and temperatureT0 at the channel entrance. The walls are heated uniformly
but their temperatures may be different resulting in an asymmetric heating situation. Under these
assumptions, the equations that describe the physical situation are

−dp

dx
+ (µ + κ)

d2u

dy2
+ κ

dn

dy
+ ρgβ(T − T0) = 0, (1)

γ
d2n

dy2
− κ

(
2n +

du

dy

)
= 0, (2)

d2T

dy2
= 0, (3)

subjected to the boundary conditions:

u(0) = 0, T (0) = T1, n(0) = 0,

u(h) = 0, T (h) = T2, n(h) = 0,
(4)

wherex andy are axial and transverse co-ordinates, respectively (x = 0 is the duct entrance and
y = 0 is the left wall);u is an axial velocity;T is a fluid temperature;n is a microrotation component
of the micropolar fluid normal to(x, y)-plane;p is a pressure;T1 is a temperature of the cold wall
(i. e., aty = 0); T2 is a temperature of the hot wall (i. e.,y = h) andρ, g, β, µ, κ, andγ are density,
gravitational acceleration, coefficient of thermal expansion, dynamic viscosity, vortex viscosity, and
spin gradient viscosity, respectively. We may notice that the condition that microrotationn vanishes
on the walls, which is called strong interaction, see Guram and Smith [9]. Further, we shall assume
thatγ has the following form as proposed by Ahmadi [10]:

γ =
(
µ +

κ

2

)
j, (5)

wherej is a microinertia density.

Eqs (1) – (3) can be non-dimensionalized using the variables

Y =
y

h
, U =

u

Uc
, θ =

T − T0

T2 − T0
, N =

h

Uc
n, (6)

whereUc is a characteristic velocity. After employing Eq. (6) and takingj = h2, the dimensionless
form of the governing equations become the following ones:

(1 + K)
d2U

dY 2
+ K

dN

dY
+

Gr
Re

θ + α = 0, (7)

(
1 +

K

2

)
d2N

dY 2
−K

(
2N +

dU

dY

)
= 0, (8)

d2θ

dY 2
= 0, (9)
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whereGr = gβ(T2 − T0)h3/ν2 is the Grashof number;Re = U0h/ν is the Reynolds number;α is
the pressure gradient parameter (assumed constant);K is a material parameter. Those are defined
as

α = − dP

dX
, K =

k

µ
. (10)

The dimensionless boundary conditions Eq. (4) become:

U(0) = 0, θ(0) = R, N(0) = 0,

U(1) = 0, θ(1) = 1, N(1) = 0,
(11)

where

R =
T1 − T0

T2 − T0
. (12)

2. Solution

Eq. (9) subjected to Eq. (11) has the analytical solution

θ = (1−R)Y + R (13)

and forK = 0 (Newtonian fluid) we haveN = 0 andU has the analytical solution obtained by
Aung and Worku [7].

On the other hand, Eqs (7) and (8) possess forK 6= 0 (micropolar fluid) the following analytical
solution:

√
2K (1 + K) U =

K

2 (2 + K)

cosh
(√

2K/ (1 + K)Y
)

sinh
(√

2K/ (1 + K)
)

[
Gr
Re

(1 + R) + 2α

]

−
√

2K (1 + K)
2 + K

[
1
3

Gr
Re

(1−R)Y 3 +
(

Gr
Re

R + α

)
Y 2

]

+

√
1 + K

2K

[
Gr
Re

(1−R)Y +
Gr
Re

R + α

]

+
[
−K exp

(
1
2

√
2K

1 + K

)
cosh

(√
2K/ (1 + K) Y

)

cosh
(

1
2

√
2K/ (1 + K)

) + K exp

(√
2K

1 + K
Y

)

−2
√

2K(1 + K)Y

]
A + 2

√
2K(1 + K)B,

(14)
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N = − 1
2 (2 + K)

sinh
(√

2K/ (1 + K)Y
)

sinh
(√

2K/ (1 + K)
)

[
Gr
Re

(1 + R) + 2α

]

+
1

2 (2 + K)
Gr
Re

(1−R)Y 2 +
1

(2 + K)

(
Gr
Re

R + α

)
Y

+

[
exp

(
1
2

√
2K

1 + K

)
sinh

(√
2K/ (1 + K) Y

)

cosh
(

1
2

√
2K/ (1 + K)

)

−2 exp

(
1
2

√
2K

1 + K
Y

)
sinh

(
1
2

√
2K

1 + K

)
Y

]
A,

(15)

whereA andB are constants which have to be determined from the following algebraic system of
equations:

K tanh

(
1
2

√
2K

1 + K

)
A−

√
2K(1 + K) B

=
K

2(2 + K)
1

sinh
(√

2K/(1 + K)
)

[
Gr
Re

(1 + R) + 2α

]
+

√
1 + K

2K

(
Gr
Re

R + α

)
,

[
K tanh

(
1
2

√
2K

1 + K

)
− 2

√
2K(1 + K)

]
A +

√
2K(1 + K)B

= − K

2(2 + K)
coth

(√
2K

1 + K

) [
Gr
Re

(1 + R) + 2α

]

+

√
2K(1 + K)
2 + K

[
1
3

Gr
Re

(1 + 2R) + α

]
−

√
1 + K

2K

(
Gr
Re

+ α

)
.

(16)

However, the pressure gradient parameterα is still undetermined. It can be evaluated from the
equation expressing the conservation of mass at any cross-section of the channel, which is given by

1∫

0

U dY = 1. (17)

Using Eqs (14) and (17), we get

3 + 2K

3K(2 + K)
α +

1
6(2 + K)

Gr
Re

+
1

4K

Gr
Re

(1 + R)−A + B = 1. (18)

In the parametric evaluation of the above analytical results, Eqs (16) and (18) are solved simultane-
ously for the unknownsA, B andα.

It should be noted that the forced convection limit in this problem is obtained by setting
Gr/Re = 0 in Eqs (7), (14) – (16) and (18), while the free convection limit is recovered by tak-
ing α = 0 andGr/Re = 1 in Eqs (7), (14) – (16).
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3. Results and Discussion

Eqs (7) and (8) subjected to the boundary conditions Eq. (11) have been solved numerically us-
ing the implicit finite-difference method discussed by Blottner [11] for some values of temperature,
material and mixed convection parametersR, K andGr/Re. These equations were discretized
using three-point central-difference quotients and, as a consequence, a set of algebraic equations
resulted. These algebraic equations were then solved by the well-known tri-diagonal Thomas algo-
rithm (see Blottner [11]). The computational domain was divided into201 points and constant step
sizes of0.01 were utilized. These step sizes were found to give accurate grid-independent results as
verified by the comparisons shown in the figures below. The numerical results for the axial velocity
U , microrotationn and pressure gradientα profiles are presented in Figs 2 to 10. The analytical
solution given by Eqs (14) and (15) are also included in these figures and it is seen that both the nu-
merical and analytical solutions are in excellent agreement. In addition, Fig. 2 shows that forK = 0
(Newtonian fluid) the present results are in excellent agreement with those reported by Aung and
Worku [7]. On the other hand, Figs 2 to 10 show that at eachR andK values, the profiles become
increasingly skewed asGr/Re increases. The skewness is characterized by an increased positive
velocity and positive microrotation profiles near the hot wall (Y = 1) and decreased values of these
profiles near the cold wall (Y = 0). It is also seen from these figures that at sufficiently large val-
ues ofGr/Re, the velocity profiles adjacent to the cold wall become negative, i. e., there is a flow
reversal condition. Both the magnitudes and extents of the reversed flow increase withGr/Re and
K. At fixed values ofGr/Re, flow separation is observed to move upstream (i. e., down the vertical
channel) as the parametersR andK decrease. Further, we can see that all the velocity profilesU
intersect atY = 0.5; at this location the velocity is positive for each value of the parameter K and
has a numerical value close to1.5. However, the microrotation profiles remain negative in the most
part of the channel but become positive near the hot wall.

The variation of the pressure gradient parameterα as a function ofGr/Re is shown in Fig. 10
for R = 0, 0.5 and1 whenK = 1. It can be seen from this figure that for allR, the parameterα
ranges from0 for a pure forced convection flow (Gr/Re = 0) to negative values asGr/Re increases.

The examination of Figs 2, 3, 5 and 8 suggests that forR < 1, the occurrence of the reversal
flow is given by the condition (

dU

dY

)

Y =0

< 0. (19)

Using Eq. (14), we get

(1−R)
Gr
Re

<
2K(2 + K)

1 + K
A for R < 1, (20)

that is (
Gr
Re

)

min

=
2K(2 + K)

(1−R)(1 + K)
A for R < 1. (21)

This equation gives the minimum value forGr/Re for which a reversal flow exists or it is the maxi-
mum value ofGr/Re for which no reversal flow occurs. Thus, for any value ofGr/Re greater than
(Gr/Re)min a reversed flow appears. It should be mentioned that for the evaluation of(Gr/Re)min,
Eqs (16), (18) and (21) are solved simultaneously for the unknownsA, B andα. The values of
(Gr/Re)min for some values of the parametersR andK are given in the Table, showig that the
value of(Gr/Re)min for which a reversal flow occurs is greater for a micropolar fluid (K = 0) than
for a Newtonian fluid (K = 0).
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Table
Values of(Gr/Re)min for occurrence of reversed flow atY = 0.

K 0 0.5 1.0 1.5 2.0 3.0
R

0 72.0000 107.5436 142.5256 177.2169 211.7379 280.4892
0.1 80.0000 119.4928 158.3618 196.9072 235.2643 311.6546
0.3 102.8571 153.6337 203.6080 253.1670 302.4827 400.6988
0.5 144.0000 215.0871 285.0512 354.4339 423.4758 560.9783
0.8 360.0000 537.7178 712.6280 886.0847 1058.7000 1402.4000

For the limiting case of free convection, recently studied by Chamkha et al. [12], we have
(

dU

dY

)

Y =0

=
2K(2 + K)

(1−R)(1 + K)
A < 0 for R < 1, (22)

where the constantA is now obtained from the following system of algebraic equations:

K tanh

(
1
2

√
2K

1 + K

)
A−

√
2K(1 + K)B

=
K

2(2 + K)
1 + R

sinh
√

2K/(1 + K)
+ R

√
1 + K

2K
,

[
K tanh

(
1
2

√
2K

1 + K

)
− 2

√
2K(1 + K)

]
A +

√
2K(1 + K)B

= −K(1 + R)
2(2 + K)

coth

(√
2K

1 + K

)
+

(1 + 2R)
3

√
2K(1 + K)
2 + K

−
√

1 + K

2K
.

(23)

For K = 0, we can compare the values of(Gr/Re)min with Eq. (14) of Aung and Worku [6].
Thus, forR = 0.1, 0.3, 0.5 and0.8, we have(Gr/Re)min = 80.0, 102.85714, 144.0 and360.0,
which are the exact values as those given in Table .

Conclusions

The theoretical results obtained in this study show that both the velocity and microroration pro-
files in the developing regions can become highly distorted in mid convection flow. The asymmetric
wall temperatures lead to skewness in the velocity and microrotation profiles. It is also concluded
the the value of(Gr/Re)min for which flow reversal occurs is greater for a micropolar fluid (K = 0)
than for a Newtonian fluid (K = 0).
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Fig. 4. The effects ofK on the microrotation profiles.

259



 

0.0 0.2 0.4 0.6 0.8 1.0 
-0.5 

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

Numerical 

Analytical 

R=0, 0.3, 0.5, 0.8, 1.0 

Gr/Re=250 

K=1.0 

U 

Y 

Fig. 5. The effects ofR on the velocity profiles.

 

0.0 0.2 0.4 0.6 0.8 1.0 
-0.25 

-0.20 

-0.15 

-0.10 

-0.05 

0.00 

0.05 

0.10 

R=1.0 

R=0.8 

R=0.5 

R=0.3 

Numerical 

Analytical 

R=0 
Gr/Re=250 

K=1.0 

N 

Y 

Fig. 6. The effects ofR on the microrotation profiles.

260



 

0.0 0.2 0.4 0.6 0.8 1.0 
-1.0 

-0.5 

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

Numerical 

Analytical 

Gr/Re=0, 100, 250, 500, 750 

K=1.0 

R=0.5 

U 

Y 

Fig. 7. The effects ofGr/Re on the velocity profiles.

 

0.0 0.2 0.4 0.6 0.8 1.0 
-0.35 

-0.30 

-0.25 

-0.20 

-0.15 

-0.10 

-0.05 

0.00 

0.05 

0.10 

Gr/Re=0 

Gr/Re=100 

Gr/Re=250 

Gr/Re=500 

Numerical 

Analytical 

Gr/Re=750 

 

K=1.0 

R=0.5 

N 

Y 

Fig. 8. The effects ofGr/Re on the microrotation profiles.
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