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This paper deals with the steady free convection over un isothermal vertical circular cyvlinder embedded in a
fluid-saturated porous medium in the presence of the thermophoresis particle deposition effect. The governing
partial differential equations are transformed into a set of non-similar equations. which are solved numerically
using an implicit finite-difference method. Comparisons with the previously published work are performed and
the results are found to be in excellent agreement. Many results are obtained and a representative set of these
results is displayed graphically to illustrate the influence of the various physical parameters on the wall
thermophoretic deposition velocity and concentration profiles.
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1. Introduction

1 ' Convective heat transfer in fluid-saturated porous media has been studied quite extensively during
~e last few decades. This has been motivated by its importance in many natural and industrial problems.
“rominent among these are the utilization of geothermal energy, chemical engineering, thermal insulation
- stems, nuclear waste management, grain storage, fruits and vegetable, migration of moisture through air
-“ntained in fibrous insulation, food processing and storage and contaminant transport in ground water and
any others. A detailed review of the subject of convective flow in porous media, including an exhaustive
~~tof references, was recently done by Nield and Bejan (1999), Ingham and Pop (1998; 2002), Vafai (2000),
- :p and Ingham (2001), and Bejan and Kraus (2003).

Free convection from a vertical or horizontal cylinder embedded in a porous medium is the principal
~>de of heat transfer in numerous applications such as in connection with oil/gas lines, insulation of horizontal
“.pes, cryogenics as well as in the context of water distribution lines, underground electrical power transmission

w25 and burial of nuclear waste, to name just a few applications. The case of a free and mixed convection flow
- m a vertical cylinder placed in a porous medium has been studied extensively both analytically and
-merically. It appears that Minkowycz and Cheng (1996) were the first to present a numerical solution of the
~-dlem of the free convective boundary layer flow induced by a heated vertical cylinder embedded in a fluid-

--.rated porous medium when the surface temperature of the cylinder is taken to be proportional to x”, where x
‘e distance from the leading edge/base of the cylinder and m is a constant. The results were obtained for
-mous values of m lying between 0 and 1. Similarity and local non-similarity methods of solution were used. The
© nlem was later extended by Merkin (1986), Kumari ef al. (1986), Ingham and Pop (1986), Merkin and Pop
-~7). Kumari and Nath (1986), Yiicel (1990), Chen ef al. (1992), Hossain and Nakavama (1993), Bassom and
-~ 11996), Pop and Na (1998), Yih (1998) and Chen and Horn (1999).
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Over the past two decades, studies in aerosol particle deposition due 10 thermophoresis have gained
importance for engineering applications. There are many systems that require the attainment of high particle
deposition efficiency and the precise control of the deposition to minimize costs and maximize the quality of
the finished product. Technological problems include particle deposition onto a surface from a condensing
vapor-gas mixture, a semni-conductor wafer in the electronic industry, and the blade surface of gas turbines.
and problems for nuclear reactor safety. Goren (1977) was one of the first to study the role of thermophoresis
in a laminar flow of a viscous and incompressible fluid. He used the classical problem of flow over a flat
plate to calculate deposition rates and showed that substantial changes in surface depositions can be obtained
by increasing the difference between the surface and free stream temperatures. This was later followed by
similarity solutions of two dimensional laminar boundary layers and stagnation point flows by Gokoglu and
Rosner (1986), Park and Rosner (1989). Kusnadi and Greif (1997) and Hsu and Greif (2002). Also, Tsai and
Lin (1999) have studied the effect of wall suction and thermophoresis on aerosol particle deposition from a
laminar flow over a flat plate, while Chiou (1998) obtained gimilarity solutions for the problem of a
continuously moving qurface in a stationary incompressible fluid. including the combined effects of
convection, diffusion, wall velocity and thermophoresis. Garg and Jayaraj (1988, 1990) discussed the
thermophoretic deposition of small particles in a forced convection laminar flow over inclined plates and a
circular cylinder, respectively. Epstein et al. (1985) and Tsai and Lin (1999) have studied the thermophoretic
transport of small particles through a free convection boundary layer adjacent to & vertical deposition surface
in a viscous and incompressible fluid, while Chiou (1998) has considered particle deposition from natural
convection boundary layer flow onto an isothermal vertical cylinder.

Despite the practical importance of thermophoresis there is, to the best of our knowledge, almost no
work devoted to this topic in porous media, except the recent paper by Chamkha and Pop (2003) for a
vertical flat plate. Consideration 1s, therefore, given here 1o the problem of free convection boundary-layer
deposition with thermophoretic transport of aerosol particles on 2 vertical isothermal circular cylinder
embedded in a fluid-saturated porous medium. The Darcy and energy equations yield the velocity and
temperature distributions in the boundary layer, which are then used in the coupled concentration equation to
calculate the rates of particle deposition.

2. Basic equations

Consider a vertical cylinder of radius ry, constant surface temperature T, and constant surface
concentration C, . which is embedded in 2 fluid-saturated porous medium of ambient temperature T., and
concentration C... respectively. In the porous media, the following assumptions are made: (i) the convective

fluid and the porous medium are in local thermal equilibrium; (ii) the properties of the fluid and the porous
media are constints: (i1 the viscous drdg nd inertia terms of the momentum equations are negligible; (iv)
the Darcyv-Boussinesq & sproximation i< valid, Under these assumptions. the conservation equations for mass.
momentum and energy for the two-dimensional steady natural convection in the porous cavity are
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Vo= k2L 2.5
i T oF 2:5)

subject to the boundary conditions

v=0, T=T,, C=C,. F=rn,
(2.6)
u—>0, T->T,, C—>C,, F-—>oo,
In order to transform these equations, we introduce the following non-dimensional variables
x=X/ry, r= RaI/Z(F/rO), u=u/U,, v= RaI/Z(V/UC),
2.7

v =Ra"*(/U.), 0=(T-T.)/(1,-T.)0=(c-C.)/(c,-C.)
~here Ra and U are the Rayleigh number and the characteristic velocity, respectively, which are defined as
Ra:gKBT(Tw—Tw)rO/(XmV’ Uc :gKBT(Tw_TOO)/V' (28)

Thus, Eqgs.(2.1)-(2.5) can be written as

(s =-(r)=0. - 29)
u=0+No, (2.10)
ox dr radrl Or
a0 3o d(ve) 11 a( aq>j
——— Y —— el - |, 212
uax var or Lerodr rar (2-12)
Pr 96
=k — 2.13)
v N,+60dr (
-ad the boundary conditions (2.6) become
v=0, 6=1, o¢=I1, on r=1,
(2.14)
u—>0, 08-50, 06650 a r—oo
The thermophoresis and buoyancy parameters N, and N are defined as
TDO
N, = . N=Bc(C, -C.)/Br (T, - T). (2.15)
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V, = —k— | (2.5)

v=0, T=T,, C=cC,, r=r,
(2.6)
u—0, T->T,, Co>C,, 7o,
In order to transform these equations, we introduce the following non-dimensional variables
x=X/r, r=Ra]/2(7/r0>, u=uj/Uu,, \*=R(11/2(F/U(.),
(2.7)

v =Ra"’(5/U,). 0=(T-T.)/(1, -1.)0=(C-C.)/(C, ~C.)
where Raand U, are the Rayleigh number and the characteristic velocity, respectively, which are defined as
Ra:gKBT(Tw_Too)rO/amV’ Uc :gKBT(Tw_Tw)/V' (2.8)

Thus, Egs.(2.1)-(2.5) can be written as

(e rv)=0, ~ 2.9)
u=0+No, (2.10)
ug%r %:l%(rgj, @.11)
v, =k N,P:e% (2.13)

-~ = the boundary conditions (2.6) become
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We now look for a solution to Egs.(2.9)-(2.12) of the form

e=2x? m=(-1)e. w=@E/2)rEn), 0=0n). o=okn) .16

where  is the stream function, which is defined in the usual way as

Thus, Egs.(2.10)-(2.12) become

9 94N, 2.18)
om

. 267 1,90 1,(0£00 0f 20 |
— 7 R _f — = — — e e e — 219
an{( +‘g”)an}+2fan zé[anag aaan] =

: a{(“&n)é@}]fa—hk L { S

Ledn an| 27 9n N, +0|2(I+E&n) an

5 D ) (2.20
Lo2%0,2000 0 (90| _1,(0708 0f00

anZ 9mon N, +0ion 27l amag 9gdn)

subject to the boundary conditions
f=0, ©6=1, ¢=1 on nN=0,
(2.21

i]i—>0, 0—0, ¢—0 as mN—oe
an

The physical parameters of interest are the local Nusselt and Sherwood numbers, Nu and Sh, whict.
are given by

Nu/Ra’? =—(§Ej ,  Sh/Ra'? =—[§9} (2.22
aT] n=0 n=0

where Ra  is the local Rayleigh number.

3. Results and discussion

Equations (2.18)-(2.20) which represent an initial-value problem with & playing the role of time ar:

non-linear, coupled, partial differential equations. which possess no closed-form solution. Therefore, the;
must be solved numerically subject to the boundary conditions given by Eq.(2.21). The implicit, iterativ:
finite-difference method discussed by Blottner (1970) has proven to be adequate for the solution of this typ
of equations. For this reason, this method is employed in the present work. Equations (2.19) and (2.20) ar;
discretized using three-point central difference quotients with the first derivatives with respect to & beir;
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discretized using two-point backward difference quotients. This converts these differential equations into
linear sets of algebraic equations at each line of constant &, which can be readily solved by the well-known

Thomas algorithm (Blottner, 1970). On the other hand, Eq.(2.18) is discretized and solved subject to the
appropriate boundary condition by the trapezoidal rule. The computational domain (§,n) was made up of

196 non-uniform grid points in the 1 direction and /07 uniform grid points in the & direction. It is expected

that most changes in the dependent variables occur in the region close to the cylinder surface where viscous
effects dominate. However, small changes in the dependent variables are expected far away from the
cylinder surface. For these reasons, variable step sizes in the 1 direction are employed. The initial step size

An; and the growth factor K™ employed such that An,,, = K*Ani (where the subscript / indicates the grid

location) were 10~ and 1.03. respectively. These values were found (by performing many numerical
experimentations) to give accurate and grid-independent solutions. However. constant step sizes of 0.01 were
used in the & direction since the changes in the dependent variables in this direction are not expected to be

great, The problem was solved line by line starting with £ =0 and marching forward in the & direction until
the desired & value is reached. At & =0, Eqgs.(2.18)-(2.20) reduce to a set of ordinary differential equations
which can be easily solved by the Thomas algorithm. This solution is then used as the initial solution to set

off the marching process. The convergence criterion employed in the present work was based on the
difference between the values of the dependent variables at the current and the previous iterations. When this

difference reached /0™, the solution was assumed converged and the iteration process was terminated.
The results are given for several values of the parameters k, Pr, Le, N and N, . However. to check the

present numerical results, we have calculated the values of the reduced heat transfer, —8'(0,0) and mass
transfer, —¢(0,0), for E=0 (flat plate) with k=0, N =0, I and Le=1. Thus, for N =0 we obtained
—0°(0,0)=0.44325 , while the value found by Minkowycz and Cheng (1976) is —6'(0,0)=0.444 . Also, for
k=0 and N=Le=1, we get —-6°(0,0)=-0¢/(0,0)=0.62783, while Bejan and Khair (1985) obtained
—6’(0,0):-(1)’(0,0):0.628. A comparison of the present results for the Jocal Nusselt number,
~06(8,0)/am with those reported by Minkowycz and Cheng (1976) is also given in Tab.1 for N = 0 and
different values of the curvature parameter . It can thus be concluded that the present results are in

excellent agreement with those of Bejan and Khair (1985), and those of Minkowycz and Cheng (1976) and
we are, therefore, confident that the present numerical results are very accurate.

Table 1. Values of the local Nusselt number, —96(Z,0)/01, for N = 0 and some values of the parameter &.

3 Minkowycz and Cheng (1976) Present results
0.25 0.4855 0.490341
0.50 0.5272 0.535189
0.75 0.5664 0.578418
1.00 0.6049 0.620125
2.00 0.7517 0.776314
3.00 0.8915 0.922123
4.00 1.024 1.059965
5.00 1.154 1.191509
6.00 1.283 1.320432
7.00 1.413 1.446461
8.00 1.544 1.570056
9.00 1.678 1.691356
10.00 1.815 1.813875
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Fig.1. Effects of N on local wall thermophoretic deposition velocity.
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Fig.2. Effects of N on concentration profiles.

Typical concentration profiles. 0{Z.1). wall thermophoretic deposition velocity, V,,, (ﬁ) and wall mass
transfer, —d (&, 0)/dn . are shown in Figs.1-8 for Pr=0.72 and some values of the governing parameters k.
Le, N and N,. These figures show how the concentration boundary layer and the wall thermophoretic
deposition velocity react to changes in the governing parameters. Thus, the concentration profiles, (b(&,n),

indicate the characteristic shape of a non-dimensional concentration with a rapid development close to the
plate. Thus, the concentration profiles decrease with an increase of the buoyancy parameter N and also with
an increase of the Lewis number Le (Figs.2 and 7), which is on line with the results reported by Bejan and
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~hair (1985) for the case when the thermophoesis effects are absent. This will give rise to a large wall
. ncentration gradient, —8(1)(&_,, 0)/87], as the parameters N and Le increase (Figs.3 and 8). It also causes a
~¢h deposition of the velocity on the surface, which increases as the thermophoretic parameter k increases,
- can be seen from Fig.4. It can be also seen in Figs.1, 5 and 6 that the wall thermophoretic deposition
locity, V,,, (é), becomes sensitive to the variation of the parameters Le, N and N,. Thus, the deposition
siocity profile on the wall is reduced as N and Le are decreased (Figs.1 and 6). However, the wall
“ermophoretic deposition velocity profiles decrease as the values of the thermophoretic parameter N, are
~.reased. This is of particular benefit in processes, which require extreme cleanliness of the surfaces.
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Fig.3. Effects of N on local wall concentration gradient.
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Fig.4. Effects of k on local wall thermophoretic deposition velocity.
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Fig.5. Effects of N, on local wall thermophoretic deposition velocity.
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Fig.6. Effects of Le on local wall thermophoretic deposition velocity.

4. Concluding remarks

Numerical solutions for heat and mass transfer by steady boundary layer free convection over a
heated isothermal vertical cylinder embedded in a porous medium in the presence of thermophoresis particle
deposition effect were reported. A finite-difference method, as proposed by Blottner (1970), has been used to
calculate the effect of thermophoresis on the deposition of particles, the concentration profiles and the
concentration gradient at the surface of cylinder. Calculations clearly show the effect of thermophoresis on
particle deposition. To the best of the authors’ knowledge, there are no experimental data on particle




. . Pop

2roa
~icle
-d to
. the
~on
~icle

Thermophoresis free convection from a vertical cylinder ...

479

deposition from naturally convected flows in porous media. It is hoped that the present treatment will
facilitate future comparisons of the natural convection deposition theory with laboratory data.
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Fig.7. Effects of Le on concentration profiles.
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Nomenclature

D

C - concentration
»n — mass diffusivity

Fig.8. Effects of Le on local concentration gradient.

f —reduced stream function
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g - gravitational acceleration
k — thermophoretic parameter
K - permeability of the porous medium
Le — Lewis number
N —buoyancy parameter
N, - thermophoretic parameter
Nu - local Nusselt number
Pr — Prandtl number
r —radial coordinate
r, —radius of the cylinder
Ra - Rayleigh number based on r, for a porous medium
[ENTT
Ra, - local Rayleigh number based on x
ey
Sh - Sherwood number 0
T - fluid temperature —
u,v — velocity components in the x- and r-directions ﬂ
v, — thermophoretic velocity
x — axial coordinage
o, - equivalentthermal diffusivity
Be - chemical expansion coefficient
Br — thermal expansion coefficient
n - pseudo-similarity variable
6 — dimensionless temperature
v — kinematic viscosity
£ - stretched streamwise coordinate
¢ - dimensionless concentration
v - stream function
Subscripts
w — condition at the wall
e - condition in the ambient fluid
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