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Abstract An analysis has been performed to study the
unsteady laminar compressible boundary layer gov-
erning the hypersonic flow over a circular cone at an
angle of attack near a plane of symmetry with either
inflow or outflow in the presence of suction. The flow
is assumed to be steady at time t=0 and at t>0 it
becomes unsteady due to the time-dependent free
stream velocity which varies arbitrarily with time. The
nonlinear coupled parabolic partial differential equa-
tions under boundary layer approximations have been
solved by using an implicit finite-difference method. It
is found that suction plays an important role in sta-
bilising the fluid motion and in obtaining unique
solution of the problem. The effect of the cross flow
parameter is found to be more pronounced on the
cross flow surface shear stress than on the streamwise
surface shear stress and surface heat transfer. Beyond
a certain value of the cross flow parameter overshoot
in the cross flow velocity occurs and the magnitude of
this overshoot increases with the cross flow parameter.
The time variation of the streamwise surface shear
stress is more significant than that of the cross flow
surface shear stress and surface heat transfer. The
suction and the total enthalpy at the wall exert strong
influence on the streamwise and cross flow surface
shear stresses and the surface heat transfer except that

the effect of suction on the cross flow surface shear
stress is small.

Nomenclature

a Velocity of sound, ms�1

A Dimensionless suction parameter=�(3/2)1/2
[(q w)w/qeu0] Rex

1/2

Cp Constant pressure specific heat, J kg�1 K
Cv Constant volume specific heat, J kg�1 K
Ec Viscous dissipation parameter=u20/2He

f ¢ Dimensionless velocity component along
streamwise direction=u/ue

g Dimensionless total enthalpy=H/He

h Specific enthalpy, J kg�1

H Total enthalpy, J kg�1

k Fluid thermal conductivity, W m�1 K
L Denotes dimensionless dependent variable f ¢ or

s¢ or g
Me Mach number at the edge of the boundary

layer=V/a
N Product of the density–viscosity ratio=ql/qele
p Static pressure, Pa
p0 Static pressure when h=0, Pa
p2 Denotes the curvature of the pressure distribu-

tion along the plane of symmetry, Pa
Pr Prandtl number=leCp/k
r Cylindrical radius of the cone, m
R Dimensionless function of dimensionless

time=1+es2

Rex Reynolds number=u0x/ me
s ¢ Dimensionless cross flow velocity profile=v/ve
t Time, s
T Temperature, K
u,v,w Velocity components along x, h and z directions,

respectively, ms�1

u0,v0 Value of u and v at time t=0, ms�1

V Fluid velocity in the inviscid flow, ms�1

x Distance along a generator of the cone from
apex, m

z Distance normal to the surface, m
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Greek symbols

a Dimensionless cross flow parameter=2nv0/
(qeleu0

2 r3)
a0 Angle of attack
b Dimensionless parameter associated with the

three-dimensional nature of the flow=(2n/v0x)
· d(m0x)/dn

c Specific heat ratio=cp/c_v (1.4 for air)
Dg,Ds Step sizes in g and s directions, respectively
g Transformed coordinate normal to the sur-

face=(3/2)(qeu0/lex)
1/2
R z
0 q=qeð Þdz

h Circumferential angle measured from plane of
symmetry

hc Semi-vertical angle of the cone
l Viscosity coefficient, kg m�1 s�1

m Kinematic viscosity, m2 s�1

n Transformed streamwise coordinate=3�1

qeleu0 (sin hc)
2x3

q Mass density, kg m�3

s Dimensionless time=(3/2)(u0/x)t
x Index in the power-law variation of viscosity

coefficient

Subscripts

e Conditions at the edge of the boundary layer
i Initial conditions
w Wall conditions
¢ Prime denotes derivative with respect to g

1 Introduction

The unsteady compressible three-dimensional laminar
boundary layers is encountered in many practical situ-
ations such as re-entry space shuttle, accelerated and
decelerated rockets and missiles, wing of supersonic
aircraft, nozzle flow etc. Unsteady viscous effects have
proved to play a vital role in the stability of missiles and
re-entry vehicles. Small fluctuations of the angle of at-
tack, gas injection through the skin and ablation are
boundary layer phenomena that may have catastrophic
effects on the stability of the body. In order to determine
the frictional drag and the rate of heat transfer through
the surface, the unsteady compressible three-dimen-
sional boundary layer equations with four independent
variables (three space variables and a time variable) have
to be solved. The introduction of time variable into the
analysis leads to great difficulties in obtaining solutions
to the complete set of boundary layer equations. The
review of papers on the theoretical and computational
aspects of the unsteady boundary layers has recently
been given by Cousteix [1] and Bettess et al. [2]. Also the
boundary layer equations may blow up after certain
time [3] due to the increase in the boundary layer
thickness with time. Therefore, many investigators have
considered similar solutions while studying the three-
dimensional boundary layer phenomena. The steady

laminar compressible three-dimensional boundary layers
at the stagnation point was considered by Libby [4] and
the corresponding unsteady case was investigated by
Kumari and Nath [5]. Reshotko and Beckwith [6]
studied the steady compressible boundary layer flow
over an infinite swept cylinder, whereas Sau and Nath [7]
examined the corresponding unsteady phenomenon.
Dwyer [8] discussed in detail certain aspects of the three-
dimensional boundary layers. Peake et al. [9] studied the
three-dimensional flow separation on aircrafts and mis-
siles, whereas Smith [10] analysed the phenomena of
flow separation associated with the three-dimensional
boundary layers.

The boundary layer flow on a cone at an angle of
attack near a plane of symmetry is a three-dimensional
flow which has several interesting features. There can be
a pressure gradient, either favourable or adverse, in the
plane of symmetry and either inflow into or outflow
from that plane. The study of boundary layer flow on a
body of revolution at an angle of incidence near the
windward and leeward generators is important in the
design of missiles and re-entry vehicles. The boundary
layer flow on a cone at an angle of attack near the
windward plane of symmetry was studied by Moore [11,
12] and Reshotko [13], whereas Trella and Libby [14],
Murdock [15], Roux [16], Wu and Libby [17] and Rubin
et al. [18] considered both the windward and leeward
sides. These studies showed the existence of non-unique
solutions for both outflow and inflow. Chou [19] de-
scribed an approximate method for the solution of three-
dimensional boundary layers on a cone near the plane of
symmetry. Lin and Rubin [20] have presented a detailed
study of three-dimensional compressible boundary layer
flow over a cone at an angle of attack. Nomura [21] has
obtained similarity solutions of the boundary layer flow
over the leeward side of a yawed blunted cone. Wortman
[22] carried out a parameteric study of laminar bound-
ary layer flows with variable fluid properties, non-unity
Prandtl number viscous dissipation and obtained simi-
larity solutions at the windward generators of sharp
cones at angles of attack.

All the above studies dealt with the steady flows
where self-similar solutions were obtained. For simplic-
ity they (except [22]) have taken the product of density
and viscosity to be constant (ql=constant) and the
Prandtl number Pr=1. As mentioned earlier, the flow is
likely to be unsteady as in the case of entry or re-entry
space vehicles which undergo deceleration, supersonic
aircrafts where the speed is suddenly changed, and
rockets and missiles where the angle of attack is
impulsively changed. In recent years, the unsteady
laminar compressible boundary layers over two-dimen-
sional and axi-symmetric bodies have been studied by a
few investigators [23–25].

The performance criteria associated with satellites,
space vehicles, aircrafts etc. strongly depend on the
thickening boundary layer and the subsequent shock
wave separation which explicitly influences the point of
transition in the viscous layer from laminar to turbulent
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resulting in an increase in the drag. One of the tools for
controlling this undesirable feature is to apply suction
on the surface. Even a small amount of suction reduces
the boundary layer thickness in the separation region.

This analysis aims to study the unsteady laminar
viscous hypersonic flow over a permeable cone at an
angle of attack near the plane of symmetry. The flow is
assumed to be steady at time t=0 and at time t>0 it
becomes unsteady due to the free stream velocity which
varies arbitrarily with time. We have included the effect
of suction to retard the growth of the boundary layers.
We have considered variable fluid properties, non-unity
Prandtl number and viscous dissipation. The nonlinear
coupled parabolic partial differential equations govern-
ing the unsteady boundary layer flow over a cone have
been solved by using an implicit finite-difference method.
The steady-state results without suction have been
compared with those of Wu and Libby [17] and Wort-
man [22]. The present work is an extension of the work
of Wu and Libby [17] to include the effects of unstead-
iness, suction, viscous dissipation, variable fluid prop-
erties and non-unity Prandtl number and of Wortman
[22] to include the effect of unsteadiness. The results will
be useful in reducing the drag on aircrafts, satellites,
missiles and space vehicles.

2 Problem formulation

Let us consider the unsteady laminar compressible
boundary layer governing the hypersonic flow over a
circular cone at an angle of incidence near a plane of
symmetry. The flow is steady initially (i.e., at time t=0)
and it becomes unsteady at t>0 due to the change in
the free stream velocity which varies arbitrarily with
time. This introduces unsteadiness in the flow field.
Figure 1 shows the coordinate system (x, z, rh), where x
is the distance along a generator of the cone from apex,
z the distance normal to the surface, r=r(x) the cylin-
drical radius of the cone and h is the circumferential
angle. The corresponding velocity components are u, w
and v. We have assumed variable fluid and non-unity
Prandtl number (q a T�1, l a Tx, Pr „ 1, where q, l
and T are density, viscosity and temperature of the
fluid, respectively, and x is the index in the power-law
variation of the viscosity), and included viscous dissi-
pation terms in the energy equation. We have also ta-

ken the Prandtl number, Pr, to be constant across the
boundary layer, because in most of the atmospheric
flight problems its variation is small [26]. We consider
the plane of symmetry to be h=0 and assume expan-
sions in h for the velocity components u, v and w, the
total enthalpy, H, and the static pressure p appropriate
to the plane of symmetry (i.e., u, w, H and p are even
functions and v odd function). Using these expansions
into the unsteady boundary layer equations for con-
servation of mass, of x-wise and h-wise momentum, and
of energy and considering only zero-order and first-or-
der terms in h, we obtain the following system of
equations [17, 27, 28]

@ðqrÞ
@t
þ @ðqurÞ

@x
þ qvþ r

@ðqwÞ
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= 0, ð1Þ
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where

� @p0
@x ¼ qe

@ue
@t þ qe ue

@ue
@x ;

�2p2 ¼ qex sin hc
@ve
@t ; r ¼ x sin hc;

þqeue sin hcx
@ve
@x þ qev

2
e ;

@p0
@t ¼ qe

@He

@t þ ue
@He

@x

� �
; H ¼ hþ u2=2:

ð5Þ

The boundary conditions are

u¼ v¼ 0; w¼wcw; H ¼Hw at z¼ 0; t> 0;
u¼ ue¼ u0Rðt�Þ; v¼ ve¼ v0Rðt�Þ; H ¼He as z!1:

ð6Þ

The initial conditions are given by

u ¼ ui; v ¼ vi; w ¼ wi; H ¼ Hi at t ¼ 0: ð7Þ

Here r is the cylindrical radius of the cone, t the time,
s(=(3/2) (u0/x)t) the dimensionless time, q the density of
the fluid, l the fluid viscosity, Pr is the Prandtl number,
v now denotes the velocity gradient in the direction
normal to the plane of symmetry and the actual velocity
either into (v<0) or out of (v>0) the plane of symmetry
is vh, whereas the cross flow velocity is given by v/ve [17],
p is the static pressure, p0 is the static pressure at the
plane of symmetry (h=0), p2 denotes the curvature of
the pressure distribution along the plane of symmetry, ue
and ve are the velocity components at the edge of the
boundary layer along the x-direction and the h-direction,
respectively and u0 and v0 are their values at time t=0,
ww is the fluid velocity normal to the surface, hc is the
semi-vertical angle of the cone, h the specific enthalpy, HFig. 1 Physical model and coordinate system
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the total enthalpy, R(s) is a continuous function of
dimensionless time s having continuous first-order
derivative with respect to time s and the subscripts e, i
and w denote conditions at the edge of the boundary
layer, initial conditions and conditions at the wall,
respectively.

Since the flow at the edge of the boundary layer is
assumed to be homentropic, the total enthalpy He is
constant in the inviscid region at the edge of the
boundary layer. Hence ¶p0/¶t=0.

In order to reduce the number of independent vari-
ables from three to two and number of equations from
four to three, we apply the following transformations to
Eqs. 1, 2, 3, 4

From eq. 8, the cross flow parameter a is a constant if
v0/u0 is a constant and the parameter b=2/3.

Using the transformations given in (8), we first obtain
qw from (1) and use it in (2) – (4). This results in the
following equations:

Nf 00ð Þ0þRðsÞ f þ asð Þ f 00 þ R�1 dR=dsð Þ
� qe=q� f 0ð Þ � @f 0=@s ¼ 0; ð9Þ

Ns00ð Þ0þRðsÞ f þ asð Þ s00 þ a RðsÞ qe=q� s02
� �

þ 2=3ð ÞRðsÞ qe=q� f 0s0ð Þ
þ R�1dR=ds qe=q� s0ð Þ � @s0=@s ¼ 0; ð10Þ

Pr
�1

Ng0
� �0

þRðsÞ f þ asð Þ g0

þ Ec R2 sð Þ 1� Pr
�1

� �

N f 0 f 00
� �0

�@g=@s

¼ 0; ð11Þ

with boundary conditions

f 0; sð Þ ¼ A=R sð Þ; f 0 0; sð Þ ¼ s 0; sð Þ ¼ s0 0; sð Þ ¼ 0;

g 0; sð Þ ¼ gw; f 0 1; sð Þ ¼ s0 1; sð Þ ¼ g 1; sð Þ ¼ 1:

ð12Þ

The initial conditions are given by the steady-state
equations which can be obtained from Eqs. 9, 10, 11 by
putting s=dR/ds=¶f¢/¶s= ¶s¢/¶s ¶g/¶s =0 and
R(s)=1. Consequently, we get the following system of
ordinary differential equations governing the steady flow

Nf 00ð Þ0þ f þ asð Þ f 00 ¼ 0; ð13Þ

Ns00ð Þ0þ f þ asð Þs00 þ a qe=q� s02
� �

þ 2=3ð Þ qe=q� f 0 s0ð Þ ¼ 0; ð14Þ

Pr�1Ng0
� �0þ f þasð Þg0 þEc 1�Pr�1

� �
N f 0 f 00

� �0¼0 ð15Þ

with boundary conditions

f 0ð Þ¼A; f 0 0ð Þ¼ s 0ð Þ¼ s0 0ð Þ¼ 0; g 0ð Þ¼ gw;

f 0 1ð Þ¼ s0 1ð Þ¼ g 1ð Þ¼ 1:
ð16Þ

Here g and n are transformed coordinates, s the
dimensionless time, f¢ the dimensionless velocity in the
streamwise direction, s¢ is the dimensionless velocity
gradient in the direction normal to the plane of sym-
metry, g the dimensionless total enthalpy, gw the total
enthalpy at the wall, Rex the Reynolds number, a the
cross flow parameter, b the parameter associated with
the three-dimensional nature of the flow, Ec the
viscous dissipation parameter, N is the product of the
density–viscosity ratios, x the index in the power-law
variation of the viscosity and x=0.5 for the hyper-
sonic flow, x=0.7 for the supersonic flow and x=1
when the density–viscosity product ql is a constant
(this simplification has been widely used in the litera-
ture), Me is the Mach number at the edge of the
boundary layer and prime denotes derivative with re-
spect to g. If the fluid velocity normal to the surface is
a constant (i.e., (qw)w/qeu0 is a constant), then the
mass transfer parameter A is a constant for a fixed
Reynolds number and A>0 for suction (here we have
considered only suction).

g ¼ 3

2

qeu0
lex

� �1=2 Zz

0

q
qe

dz; n = 3 - 1 qeleu0ðsin hcÞ2 x3;

s ¼ ð3=2Þðu0=xÞt; uðx; z; tÞ ¼ u0 RðsÞf 0ðg; sÞ;
vðx; z; tÞ ¼ v0 RðsÞs0ðg; sÞ; Hðx; z; tÞ ¼ Hegðg; sÞ;
a ¼ 2nv0=ðqe=leu

2
0r3Þ ¼ ð2v0=3u0 sin hcÞ;

b ¼ ð2n=v0xÞ d(v0xÞ=dn, f (0,s) = A/R(s), A ¼ � 3

2

� �1=2 qwð Þw
qeu0

Re1=2x ;

Ec ¼ u2
0=2He ¼ 2�1 c� 1ð ÞM2

e = 1þ 2�1 c� 1ð ÞM2
e

� �
; Rex ¼ u0x=ve;

qe=q ¼ h=he ¼ g� Ec f
02

	 

= 1� Ecð Þ; l=le ¼ ðh=heÞx ¼ g� Ec f

02
	 


= 1� Ecð Þ
h ix

;

N ¼ ql=qele ¼ g� Ec f
02

	 

= 1� Ecð Þ

h ix�1
:

ð8Þ
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It may be remarked the steady-state Eqs. 13, 14, 15
under conditions (16) for A=0 (no suction),
Pr=N=x=1, Ec=0 are identical to those of Wu and
Libby [17] and for A „ 0, N „ 1, x „ 1 to those of
Wortman [22].

3 Methods of solution

Equations 9, 10, 11 under boundary conditions (Eq. 12)
and initial conditions (Eqs. 13, 14, 15, 16) have been
solved by using an implicit, tridiagonal iterative finite-
difference scheme similar to that of Blottner [29]. All the
first-order derivatives with respect to s are replaced by
two-point backward-difference formulae

@L=@s ¼ Lm;n � Lm�1;n
� �

=Ds; ð17Þ

where L denotes any dependent variable f¢ or s¢ or g and
m and n are node locations along s and g directions,
respectively. First the third-order partial differential Eqs
9, and 10 are converted to second-order by substituting
f¢=F and s¢=S. Then these second-order partial differ-
ential equations are descretised by three-point central
difference formulae and all the first order by trapezoidal
rule. The terms f and s are evaluated from f=f(0,s)+�n0
Fdg and s=s(0,s)+�n0 Sdg. The nonlinear terms are
evaluated at the previous iteration. At each time step of
constant s, a system of algebraic equations are solved
iteratively by using the Thomas algorithm (see, Blottner
[29]). The same procedure is repeated for the next s value
and the equations are solved line by line until the desired
value of s is reached. A convergence criterion based on
the relative difference between the current and previous
iterations is used. When this difference reaches 10�5, the
solution is assumed to have converged and the iterative
process is terminated.

A sensitivity analysis of the effect of the step sizes Dg
and Ds and the edge of the boundary layer g¥ on the
solutions was performed. Finally, the computations were
carried out with Dg=0.02, Ds=0.005 for 0 £ s £ 0.2
and Ds=0.05 for 0.2<s £ 2.0 and g¥=8.

4 Results and discussion

Equations 9, 10, 11 under boundary conditions (Eq. 12)
and initial conditions (Eqs. 13, 14, 15, 16) have been
solved by using an implicit finite-difference scheme as
described earlier. In order to validate our results, we
have compared the steady state surface shear stresses in
the streamwise and cross flow directions (f¢¢(0), s¢¢(0)) for
A=Ec=0, Pr=N=x=1 with those of Wu and Libby
[17] and they are found to be in good agreement. The
comparison is shown in Figs. 2 and 3. We have also
compared the ratio of surface shear stresses in the
streamwise and cross flow directions and the surface
heat transfer for the steady state (f¢¢(0)/f0¢¢(0),s¢¢(0)/
s0¢¢(0),g¢(0)/g¢0(0), where f¢¢(0), s¢¢(0) and g¢(0) are surface
shear stresses and heat transfer on a cone for an angle of

attack and f¢¢0(0), s¢¢0(0) and g¢0(0) are corresponding
results for zero angle of attack) when x=0.5, Ec=0.5,
gw=0.1, 0 £ a £ 3, Pr=0.715 with those of Wortman
[22] and found them in very good agreement. The
comparison is presented in Table 1.

The effects of the cross-flow parameter a on the
velocity and total enthalpy profiles(f¢(g,s), s¢(g,s), g(g,s))
for A=2, gw=0.25 Me=20, Pr=0.7, R(s)=1 + es2,
e=0.2, c=1.4, x=0.5, s=1.0 are shown in Figs. 4, 5, 6.
The velocity and the total enthalpy profiles increase with
a. However, the effect is more pronounced on the cross-
flow velocity profiles (s¢(g,s)) than on the streamwise
velocity profiles f¢(g,s) and the total enthalpy profiles
g(g,s), because a produces more significant changes on

Fig. 2 Comparison of streamwise surface shear stress for the
steady flow, f¢¢(0), when A=0, Pr=x=1, Ec=0 with that of Wu
and Libby [17]

Fig. 3 Comparison of cross flow surface shear stress for the steady
flow, s¢¢(0), when A=0, Pr=x =1, Ec =0 with that of Wu and
Libby [17]
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s¢(g,s) than on f¢(g,s) and g(g,s). Also, there is an over-
shoot in the cross-flow velocity profiles (s¢(g,s)) near the
surface if a>a0. Further increase in a enhances the
magnitude of velocity overshoot.

The effects of the cross-flow parameter a on the
streamwise surface shear stress (f¢¢(o,s)) and the cross-
flow surface shear stress (s¢¢(o,s)) and the surface heat
transfer (g¢(o,s)) are presented in Figs. 7, 8, 9. Since
positive a acts like a favourable pressure gradient and
negative a as an adverse pressure gradient, for a fixed
time s, the surface shear stresses and the heat transfer
increase with a, but the effect is more pronounced on the
cross-flow shear stress. For s=1, the cross-flow shear
stress for a=1.0 is about seven times its value for
a=�1.0. For a fixed a, the surface shear stress in the
streamwise direction (f¢¢(0, s)) increases monotonically
with time s. For a=1, f¢¢(0,s) increases by about 55% as
a increases from �1 to 1. On the other hand, the cross-
flow surface shear stress and the surface heat transfer
(s¢¢(0,s), g¢(0,s)) do not change with time monotonically.
The cross flow surface shear stress for s ‡ 0 decreases in
the time interval 0 £ s £ 0.5 and then slowly increases,
but for a>0, it increases with time s in general. The
surface heat transfer (g¢(0, s)) first increases in the
interval 0 £ s £ 0.5 and then decreases. The trend
mentioned above is due to the opposite role played by
the parameters.

Figures 10, 11, 12 present the effects of surface suc-
tion (A>0) on the velocity and total enthalpy profile
(f¢(g,s), s¢(g,s), g(g,s)) for gw=0.25, Me=20, Pr=0.7,
a=0.5, R(s)=1 + es2, e=0.2, c=1.4, x=0.5, s=1.0.

Since suction reduces the momentum and thermal
boundary thicknesses, the velocity and total enthalpy
profiles increase with A. Suction also increases the
overshoot in the cross flow velocity.

Figures 13, 14, 15 display the effects of suction
(A>0) on the streamwise and cross-flow surface shear
stresses (f¢¢(0,s), s¢¢(0,s)) and the surface heat transfer
(g¢(0,s)) for gw=0.25, Me=20, Pr=0.7, a=0.5, R(s)=1
+es2, e=0.2, c=1.4, x=0.5, 0 £ s £ 2.0. Since suc-
tion suck away the hot fluid near the surface, it provides
a stabilising effect on the flow field and reduces the
momentum and thermal boundary layers. Consequently,
for a given time s, the streamwise and cross-flow shear

Table 1 Comparison of the
ratio of surface shear stresses
and heat transfer for gw=0.1,
Ec=0.5, Pr=0.715, w=0.5,
A=0

a Present results Wortman [22]

f¢¢(0)/f¢¢0(0) s¢¢(0)/s¢¢0(0) g¢(0)/g¢0(0) f¢ (0)/f¢¢0(0) s¢¢(0)/s¢¢0(0) g¢(0)/g¢0(0)

0 1.00 1.00 1.00 1.00 1.00 1.00
0.5 1.302 1.281 1.301 1.30 1.28 1.30
1.0 1.541 1.510 1.530 1.54 1.51 1.53
2.0 1.921 1.892 1.921 1.92 1.89 1.92
3.0 2.249 2.199 2.242 2.25 2.20 2.24

Fig. 4 Effects of cross flow parameter a on f¢(g,s)

Fig. 5 Effects of cross flow parameter a on s¢(g,s)

Fig. 6 Effects of cross flow parameter a on g(g,s)
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stresses and the heat transfer increase with A. However,
in a small interval of time (0 £ s £ 0.2) the cross-flow
shear stress differs from this trend due to the competi-
tion amongst various parameters having opposing
trends. At time s=2, the streamwise surface shear stress,
cross-flow surface shear stress and heat transfer increase

by 110, 40 and 276%, respectively. For a given A, the
surface shear stress in the streamwise direction (f¢¢(0,s))
increase monotonically with time s. When A=2, f¢¢(0,s)
increases by about 58% as s increases from zero to two.
On the other hand, the variation of the cross-flow sur-
face shear stress (s¢¢(0,s)) and the surface heat transfer

Fig. 8 Effects of cross flow parameter a on s¢¢(0, s)

Fig. 12 Effects of suction parameter A on g(g,s)

Fig. 11 Effects of suction parameter A on s¢(g,s)

Fig. 7 Effects of cross flow parameter a on f¢¢(0, s)

Fig. 9 Effects of cross flow parameter a on g¢(0,s)

Fig. 10 Effects of suction parameter A on f¢(g,s)
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(g¢(0,s)) with time s is non-monotonic. The cross-flow
surface shear stress first decreases with increasing time s
and attains a minimum in the time interval 0.4<s<0.75
depending on the value of A. The location of this min-
imum shifts towards the wall as A increases. The surface
heat transfer qualitatively shows trend opposite to that

of cross-flow shear stress. Also it varies very little with
time.

The effects of the total enthalpy gw at the wall on the
velocity and total enthalpy profiles (f¢(g,s), s¢(g,s), g(g,s))
for A=2, Me=20, Pr=0.7, a=0.5, R(s)=1 + es2,
e=0.2, s=1.0, c=1.4, x=0.5 are shown in Figs. 16, 17,

Fig. 16 Effects of total enthalpy at the wall gw on f¢(g,s)

Fig. 17 Effects of total enthalpy at the wall gw on s¢(g,s)

Fig. 18 Effects of total enthalpy at the wall gw on g(g,s)

Fig. 14 Effects of suction parameter A on s¢¢(0,s)

Fig. 13 Effects of suction parameter A on f¢¢(0,s)

Fig. 15 Effects of suction parameter A on g¢(0, s)

639



18. It is evident from these figures that both the velocity
and the total enthalpy profiles increase with gw every-
where. Consequently, velocity gradients in the stream-
wise and cross-flow directions increase with gw, but the
total enthalpy gradient decreases. This can be explained
as follows. When gw increases, the wall becomes more

hot, but the total enthalpy difference between the fluid
near and at the wall decreases. This in turn causes
reduction in the total enthalpy gradient at the surface.
For gw=0.75, the total enthalpy (g(g,s)) near the wall
slightly exceeds its value at the edge of the boundary
layer (overshoot in the total enthalpy profiles). This
overshoot is attributed to the simultaneous effects of
various parameters.

Figures 19, 20, 21 show the effects of the total en-
thalpy at the wall gw on the surface shear stresses in the
streamwise and cross-flow directions (f¢¢(0,s), s¢¢(0,s))
and the surface heat transfer (g¢(0,s)) for A=2,
Me=20, Pr=0.7, x=0.5, R(s)=1 + es2, e=0.2, 0 £
s £ 2, c=1.4, a=0.5. As in the case of suction
parameter A, the surface shear stresses in the stream-
wise and cross-flow directions (f¢¢(0,s), s¢¢(0,s)) for a
fixed time s increase with gw, but unlike suction the
surface heat transfer (g¢(0,s)) decreases. This last trend
is due to the reduction of the total enthalpy gradient
with increasing gw. For s=2, f¢¢(0,s), s¢¢(0,s) and g¢(0,s)
increase by about 105, 160 and 174% as gw increases
from 0.25 to 0.75. For a fixed gw, the variation of the
surface shear stresses and the heat transfer (f¢¢(0,s),
s¢¢(0,s), g¢(0,s)) with time s is qualitatively similar to
that of the suction parameter A. Hence it is not dis-
cussed here.

5 Conclusions

The total enthalpy at the wall and suction strongly af-
fect the surface shear stresses in the streamwise and
cross-flow directions as well as the surface heat transfer
and they increase with these parameters except the heat
transfer which decreases with increasing wall enthalpy.
The cross-flow parameter significantly affects the cross-
flow surface shear stress, but its effect on the streamwise
shear stress and the heat transfer is comparatively
weak. There is an overshoot in the cross-flow velocity
when the cross flow parameter exceeds a certain value
and the magnitude of this overshoot increases with
cross-flow parameter, suction and total enthalpy at the
wall. When the total enthalpy at the wall exceeds a
certain value, slight overshoot in the total enthalpy
profile occurs. The role of suction is found to be very
important in the sense that it enables us to obtain
unique solution.
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