NATURAL CONVECTIVE BOUNDARY LAYER FLOW OVER A NONISOTHERMAL VERTICAL PLATE EMBEDDED IN A POROUS MEDIUM SATURATED WITH A NANOFUID

Rama Subba Reddy Gorla1 and Ali Chamkha2

1Cleveland State University, Cleveland, Ohio
2Public Authority for Applied Education and Training, Shuweikh, Kuwait

Nanofluid refers to a liquid containing a dispersion of submicronic solid particles or nanoparticles. Nanofluids display a thermal conductivity enhancement. This phenomenon suggests the possibility of using nanofluids in electronic cooling and advanced nuclear systems. In this article, a boundary layer analysis is presented for the natural convection past a nonisothermal vertical plate in a porous medium saturated with a nanofluid. Numerical results for friction factor, surface heat transfer rate, and mass transfer rate are presented for parametric variations of the buoyancy ratio parameter, \(N_r\); Brownian motion parameter, \(N_b\); thermodiffusive parameter, \(N_t\); Lewis number, \(Le\); and the power law exponent, \(\lambda\). The dependency of the friction factor, surface heat transfer rate (Nusselt number), and mass transfer rate on these parameters is discussed.

KEY WORDS: natural convection, porous medium, nanofluid

INTRODUCTION

Nanofluids have many applications in industry because materials of nanometer size have unique physical and chemical properties. Nanofluids are solid–liquid composite materials consisting of solid nanoparticles or nanofibers with sizes typically of 1–100 nm suspended in liquid. Nanofluids have attracted great interest recently because of reports of greatly enhanced thermal properties. For example, a small amount (<1% volume fraction) of Cu nanoparticles or carbon nanotubes dispersed in ethylene glycol or oil is reported to increase the inherently poor thermal conductivity of the liquid by 40 and 150\%, respectively [1, 2]. Conventional particle–liquid suspensions require high concentrations (>10\%) of particles to achieve such enhancement. However, problems of rheology and stability are amplified at high concentrations, precluding the widespread use of conventional slurries as heat transfer fluids. In some cases, the observed enhancement in thermal conductivity of nanofluids is orders of magnitude greater than that predicted by well-established theories. Other perplexing results in this rapidly evolving field include a surprisingly strong temperature dependence of the thermal conductivity [3] and a threefold higher critical heat flux compared with the base fluids [4, 5]. These enhanced thermal properties are not merely of...
NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_B</td>
<td>Brownian diffusion coefficient</td>
</tr>
<tr>
<td>D_T</td>
<td>thermophoretic diffusion coefficient</td>
</tr>
<tr>
<td>f</td>
<td>rescaled nanoparticle volume fraction</td>
</tr>
<tr>
<td>g</td>
<td>gravitational acceleration vector</td>
</tr>
<tr>
<td>K</td>
<td>permeability of porous medium</td>
</tr>
<tr>
<td>k_m</td>
<td>effective thermal conductivity of the porous medium</td>
</tr>
<tr>
<td>Le</td>
<td>Lewis number</td>
</tr>
<tr>
<td>N_b</td>
<td>Brownian motion parameter</td>
</tr>
<tr>
<td>N_r</td>
<td>buoyancy ratio</td>
</tr>
<tr>
<td>N_t</td>
<td>thermophoresis parameter</td>
</tr>
<tr>
<td>Nu</td>
<td>Nusselt number</td>
</tr>
<tr>
<td>P</td>
<td>pressure</td>
</tr>
<tr>
<td>q'</td>
<td>wall heat flux</td>
</tr>
<tr>
<td>Ra</td>
<td>local Rayleigh number</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number</td>
</tr>
<tr>
<td>S</td>
<td>dimensionless stream function</td>
</tr>
<tr>
<td>T</td>
<td>temperature</td>
</tr>
<tr>
<td>T_W</td>
<td>wall temperature of the vertical plate</td>
</tr>
<tr>
<td>T_{∞}</td>
<td>ambient temperature</td>
</tr>
<tr>
<td>U</td>
<td>reference velocity</td>
</tr>
<tr>
<td>u, v</td>
<td>Darcy velocity components</td>
</tr>
<tr>
<td>(x, y)</td>
<td>Cartesian coordinates</td>
</tr>
</tbody>
</table>

Greek Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_m</td>
<td>thermal diffusivity of porous medium</td>
</tr>
<tr>
<td>β</td>
<td>volumetric expansion coefficient of fluid</td>
</tr>
<tr>
<td>ϵ</td>
<td>porosity</td>
</tr>
<tr>
<td>η</td>
<td>dimensionless distance</td>
</tr>
<tr>
<td>θ</td>
<td>dimensionless temperature</td>
</tr>
<tr>
<td>μ</td>
<td>viscosity of fluid</td>
</tr>
<tr>
<td>ρ_f</td>
<td>fluid density</td>
</tr>
<tr>
<td>ρ_p</td>
<td>nanoparticle mass density</td>
</tr>
<tr>
<td>$(\rho c)_f$</td>
<td>heat capacity of the fluid</td>
</tr>
<tr>
<td>$(\rho c)_m$</td>
<td>effective heat capacity of porous medium</td>
</tr>
<tr>
<td>$(\rho c)_n$</td>
<td>effective heat capacity of nanoparticle material</td>
</tr>
<tr>
<td>τ</td>
<td>parameter defined by Eq. (13)</td>
</tr>
<tr>
<td>ϕ</td>
<td>nanoparticle volume fraction</td>
</tr>
<tr>
<td>ϕ_W</td>
<td>nanoparticle volume fraction at the wall of the vertical plate</td>
</tr>
<tr>
<td>φ</td>
<td>ambient nanoparticle volume fraction</td>
</tr>
<tr>
<td>ψ</td>
<td>stream function</td>
</tr>
</tbody>
</table>

academic interest. If confirmed and found consistent, they would make nanofluids promising for applications in thermal management. Furthermore, suspensions of metal nanoparticles are being developed for other purposes, such as medical applications including cancer therapy. The interdisciplinary nature of nanofluid research presents a great opportunity for exploration and discovery at the frontiers of nanotechnology.

Porous media heat transfer problems have several engineering applications such as geothermal energy recovery, crude oil extraction, groundwater pollution, thermal energy storage, and flow-through filtering media. Cheng and Minkowycz [6] presented similarity solutions for free convective heat transfer from a vertical plate in a fluid-saturated porous medium. Gorla and Tornabene [7] and Gorla and Zinolabedini [8] solved a nonsimilar problem of free convective heat transfer from a vertical plate embedded in a saturated porous medium with an arbitrarily varying surface temperature or heat flux. The problem of combined convection from vertical plates in porous media was studied by Minkowycz et al. [9] and Ranganathan and Viskanta [10]. All of these studies were concerned with Newtonian fluid flows. The boundary layer flows in nanofluids have been analyzed recently by Nield and Kuznetsov [11, 12]. A clear picture of nanofluid boundary layer flow is still to emerge.

Nanofluids in porous media constitute an emerging topic. Porous foam and microchannel heat sinks used for electronic cooling are optimized utilizing porous media. The utilization of nanofluids for cooling of microchannel heat sinks requires an understanding of the fundamentals of nanofluid convection in porous media.

The present work has been undertaken in order to analyze the natural convection past a nonisothermal vertical plate in a porous medium saturated by a nanofluid. The effects of Brownian motion and thermophoresis are included for the nanofluid. Numerical solutions
of the boundary layer equations are obtained and discussion is provided for several values of the nanofluid parameters governing the problem.

ANALYSIS

We consider the steady free convection boundary layer flow past a vertical plate placed in a nanofluid-saturated porous medium. The coordinate system is selected such that the x-axis is aligned vertically upwards. We consider the two-dimensional problem. We consider a vertical plate at \(y = 0 \). At this boundary the temperature \(T \) and the nanoparticle fraction \(\phi \) take constant values \(T_W \) and \(\phi_W \), respectively. The ambient values, as \(y \) tends to infinity, of \(T \) and \(\phi \) are denoted by \(T_\infty \) and \(\phi_\infty \), respectively.

The Oberbeck-Boussinesq approximation is employed and homogeneity and local thermal equilibrium in the porous medium are assumed. We consider the porous medium whose porosity is denoted by \(\varepsilon \) and permeability by \(K \). The Darcy velocity is denoted by \(\vec{v} \). The following four field equations embody the conservation of total mass, momentum, thermal energy, and nanoparticles, respectively. The field variables are the Darcy velocity \(\vec{v} \), the temperature \(T \), and the nanoparticle volume fraction \(\phi \).

\[
\nabla \cdot \vec{v} = 0
\]

\[
\frac{\rho_f}{\varepsilon} \frac{\partial \vec{v}}{\partial t} = -\nabla P - \frac{\mu}{K} \vec{v} + \left[\phi \rho_p + (1 - \phi) \left(\rho_f (1 - \beta (T - T_\infty)) \right) \right] \vec{g}
\]

(1)

(2)

\[
(\rho c)_m \frac{\partial T}{\partial t} + (\rho c)_f \vec{v} \cdot \nabla T = k_m \nabla^2 T + \varepsilon (\rho c)_p \left[D_B \nabla \phi \cdot \nabla \phi + \frac{D_T}{T_\infty} \nabla^2 T \right]
\]

(3)

\[
\frac{\partial \phi}{\partial t} + \frac{1}{\varepsilon} \vec{v} \cdot \nabla \phi = D_B \nabla^2 \phi + \frac{D_T}{T_\infty} \nabla^2 T
\]

(4)

We write \(\vec{v} = (u, v) \).

Here \(\rho_f \), \(\mu \), and \(\beta \) are the density, viscosity, and volumetric volume expansion coefficient of the fluid; \(\rho_p \) is the density of the particles; \(g \) is the gravitational acceleration; \((\rho c)_m \) is the effective heat capacity; \(k_m \) is the effective thermal conductivity of the porous medium; \(D_B \) is the Brownian diffusion coefficient; and \(D_T \) is the thermophoretic diffusion coefficient. The flow is assumed to be slow so that an advective term and a Forchheimer quadratic drag term do not appear in the momentum equation.

The boundary conditions are taken as

\[
u = 0, \quad T = T_W, \quad \phi = \phi_W, \quad \text{at} \quad y = 0,
\]

(5)

\[
u = 0, \quad T \to T_\infty, \quad \phi \to \phi_\infty, \quad \text{as} \quad y \to \infty
\]

(6)

We consider the steady-state flow. In keeping with the Oberbeck-Boussinesq approximation and an assumption that the nanoparticle concentration is dilute, the momentum equation may be written as:

\[
0 = -\nabla P - \frac{\mu}{K} \vec{v} + \left[(\rho_p - \rho_f) (\phi - \phi_\infty) + (1 - \phi_\infty) \rho_f \beta (T - T_\infty) \right] \vec{g}
\]

(7)
We now make the standard boundary layer approximation based on a scale analysis and write the governing equations.

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
\]
\tag{8}

\[
\frac{\partial P}{\partial x} = -\frac{u}{K} + [(1 - \phi_\infty) \rho_f \beta g (T - T_\infty) - (\rho_p - \rho_f) g (\phi - \phi_\infty)]
\]
\tag{9}

\[
\frac{\partial P}{\partial y} = 0
\]
\tag{10}

\[
u \frac{\partial T}{\partial x} + \nu \frac{\partial T}{\partial y} = \alpha_m \nabla^2 T + \tau \left[D_B \frac{\partial \phi}{\partial y} + \left(\frac{D_T}{T_\infty} \right) \left(\frac{\partial T}{\partial y} \right)^2 \right]
\]
\tag{11}

\[
\frac{1}{\varepsilon} \left(u \frac{\partial \phi}{\partial x} + v \frac{\partial \phi}{\partial y} \right) = D_B \frac{\partial^2 \phi}{\partial y^2} + \left(\frac{D_T}{T_\infty} \right) \frac{\partial^2 T}{\partial y^2}
\]
\tag{12}

where

\[
\alpha_m = \frac{k_m}{(\rho c)_f}, \quad \tau = \frac{\varepsilon (\rho c)_p}{(\rho c)_f}
\]
\tag{13}

One can eliminate \(P \) from Eqs. (9) and (10) by cross-differentiation. At the same time one can introduce a streamline function \(\psi \) such that the continuity is automatically satisfied:

\[
u = \frac{\partial \psi}{\partial x}, \quad v = -\frac{\partial \psi}{\partial x}
\]
\tag{14}

We are then left with the following three equations:

\[
\frac{\partial^2 \psi}{\partial y^2} = \frac{(1 - \phi_\infty) \rho_f \beta g K}{\mu} \frac{\partial T}{\partial y} + \frac{(\rho_p - \rho_f) g K}{\mu} \frac{\partial \phi}{\partial y}
\]
\tag{15}

\[
\frac{\partial \psi}{\partial y} \frac{\partial T}{\partial x} - \frac{\partial \psi}{\partial x} \frac{\partial T}{\partial y} = \alpha_m \nabla^2 T + \tau \left[D_B \frac{\partial \phi}{\partial y} + \left(\frac{D_T}{T_\infty} \right) \left(\frac{\partial T}{\partial y} \right)^2 \right]
\]
\tag{16}

\[
\frac{1}{\varepsilon} \left(\frac{\partial \psi}{\partial y} \frac{\partial \phi}{\partial x} - \frac{\partial \psi}{\partial x} \frac{\partial \phi}{\partial y} \right) = D_B \frac{\partial^2 \phi}{\partial y^2} + \left(\frac{D_T}{T_\infty} \right) \frac{\partial^2 T}{\partial y^2}
\]
\tag{17}

Proceeding with the analysis, we introduce the following dimensionless variables:

\[
\eta = \frac{y}{x} \cdot Ra^{1/2}
\]
\[
Ra_x = \frac{(1 - \phi_\infty) \rho_f \beta g K A x}{\mu \cdot \alpha_m}
\]
\[
S = \frac{\psi}{\alpha_m \cdot Ra^{1/2}}
\]
\[
\theta = \frac{T - T_\infty}{T_W - T_\infty}
\]
CONVECTIVE BOUNDARY LAYER FLOW

\[f = \frac{\phi - \phi_\infty}{\phi_W - \phi_\infty} \]

(18)

We assume that

\[T_W - T_\infty = A x^\lambda \]

\[\phi_W - \phi_\infty = B x^\lambda \]

where \(A, B, \) and \(\lambda \) are constants.

Substituting the expressions in Eq. (18) into the governing Eqs. (15)–(17) we obtain the following transformed equations:

\[S'' - \theta' + N_r \cdot f' = 0 \]

(19)

\[\theta'' + \frac{1}{2} S \theta' + N_b \cdot f' \cdot \theta' + N_t (\theta')^2 - \lambda \cdot \theta \cdot S' = 0 \]

(20)

\[f'' + \frac{1}{2} L_e \cdot S \cdot f' + \frac{N_t}{N_b} \theta'' - \lambda \cdot L_e \cdot S' \cdot f = 0 \]

(21)

where the four parameters are defined as:

\[N_r = \frac{\left(\rho_p - \rho_f \phi_W - \phi_\infty \right)}{\rho_f \beta \left(T_W - T_\infty \right) (1 - \phi_\infty)} \]

\[N_b = \frac{\varepsilon (\rho c)_p D_B (\phi_W - \phi_\infty)}{(\rho c)_f \alpha_m} \]

\[N_t = \frac{\varepsilon (\rho c)_p D_T (T_W - T_\infty)}{(\rho c)_f \alpha_m T_\infty} \]

\[L_e = \frac{\alpha_m}{\varepsilon \cdot D_B} \]

(22)

Here, \(N_r, N_b, N_t, \) and \(L_e \) denote the buoyancy ratio parameter, Brownian motion parameter, thermophoresis parameter, and Lewis number, respectively.

The transformed boundary conditions are as follows:

\[\eta = 0 : \quad S = 0, \quad \theta = 1, \quad f = 1 \]

\[\eta \to \infty : \quad S' = 0, \quad \theta = 0, \quad f = 0 \]

(23)

The local friction factor may be written as

\[C_{f_x} = \left(\frac{\mu}{\rho U^2} \right) y = 0 = \frac{2 [Rax]^T (3/2) . S''(0)) / (Rex)^T 2 . Pr} \]

The heat transfer rate at the surface is given by:

\[q_W = -k_f \left(\frac{\partial T}{\partial y} \right)_{y=0} \]
The heat transfer coefficient is given by:

\[h = \frac{q_W}{(T_W - T_\infty)} \]

The local Nusselt number is given by:

\[Nu_x = \frac{h \cdot x}{k_f} = -Ra_x^{1/2} \cdot \theta' (\xi, 0) \quad (24) \]

The mass transfer rate at the surface is given by:

\[NW = -D \left(\frac{\partial \phi}{\partial y} \right)_{y=0} = h_m (\phi_W - \phi_\infty) \]

where \(h_m \) is the mass transfer coefficient.

The local Sherwood number is given by:

\[Sh = \frac{h_m \cdot x}{D} = -Ra_x^{1/2} \cdot f' (\xi, 0) \quad (25) \]

NUMERICAL METHOD

The system of Eqs. (19)–(21) with the boundary conditions (23) is solved numerically by means of an efficient, iterative, tridiagonal implicit finite-difference method discussed previously by Blottner [13]. Equations (19)–(21) are discretized using three-point central difference formulae with \(S' \) replaced by another variable \(V \). The \(\eta \) direction is divided into 196 nodal points and a variable step size is used to account for the sharp changes in the variables in the region close to the surface where viscous effects dominate. The initial step size used is \(\Delta \eta_1 = 0.001 \) and the growth factor \(K = 1.037 \) such that \(\Delta \eta_n = K \Delta \eta_{n-1} \) (where the subscript \(n \) is the number of nodes minus one). This gives \(\eta_{\text{max}} \approx 35 \), which represents the edge of the boundary layer at infinity. The ordinary differential equations are then converted into linear algebraic equations that are solved by the Thomas algorithm discussed by Blottner [13]. Iteration is employed to deal with the non-linear nature of the governing equations. The convergence criterion employed in this work was based on the relative difference between the current and the previous iterations. When this difference or error reached \(10^{-5} \), the solution was assumed to be converged and the iteration process was terminated.

RESULTS AND DISCUSSION

Equations (19)–(21) were solved numerically to satisfy the boundary conditions (23) for parametric values of \(Le, Nr, Nb, Nt, \) and power law exponent \(\lambda \) using a finite difference method. Tables 1–5 indicate results for wall values for the gradients of velocity, temperature, and concentration functions, which are proportional to the friction factor, Nusselt number, and Sherwood number, respectively. From Tables 1–3, we notice that as \(Nr \) and \(Nt \) increase, the friction factor increases, whereas the heat transfer rate (Nusselt number) and mass transfer rate (Sherwood number) decrease. As \(Nb \) increases, the friction factor and surface mass transfer rates increase, whereas the surface heat transfer rate decreases.
Table 1
Effects of N_r on $S''(0)$, $-\theta'(0)$, and $-f'(0)$ for $N_b = 0.3$, $N_r = 0.1$, $Le = 10$, and $\lambda = 0$

<table>
<thead>
<tr>
<th>N_r</th>
<th>$S''(0)$</th>
<th>$-\theta'(0)$</th>
<th>$-f'(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>-0.0180685</td>
<td>0.3297846</td>
<td>1.619866</td>
</tr>
<tr>
<td>0.2</td>
<td>-0.0010914</td>
<td>0.3227547</td>
<td>1.556346</td>
</tr>
<tr>
<td>0.3</td>
<td>0.0145055</td>
<td>0.3149958</td>
<td>1.489373</td>
</tr>
<tr>
<td>0.4</td>
<td>0.0283915</td>
<td>0.3072273</td>
<td>1.419391</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0408457</td>
<td>0.2980915</td>
<td>1.347429</td>
</tr>
</tbody>
</table>

Table 2
Effects of N_r on $S''(0)$, $-\theta'(0)$, and $-f'(0)$ for $N_b = 0.3$, $N_r = 0.5$, $Le = 10$, and $\lambda = 0$

<table>
<thead>
<tr>
<th>N_r</th>
<th>$S''(0)$</th>
<th>$-\theta'(0)$</th>
<th>$-f'(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.0408457</td>
<td>0.2980915</td>
<td>1.347429</td>
</tr>
<tr>
<td>0.2</td>
<td>0.0418536</td>
<td>0.2855166</td>
<td>1.337651</td>
</tr>
<tr>
<td>0.3</td>
<td>0.0428675</td>
<td>0.2740883</td>
<td>1.334341</td>
</tr>
<tr>
<td>0.4</td>
<td>0.0440512</td>
<td>0.2628078</td>
<td>1.334338</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0454118</td>
<td>0.2522424</td>
<td>1.337451</td>
</tr>
</tbody>
</table>

Table 3
Effects of N_b on $S''(0)$, $-\theta'(0)$, and $-f'(0)$ for $N_r = 0.5$, $N_r = 0.1$, $Le = 10$, and $\lambda = 0$

<table>
<thead>
<tr>
<th>N_b</th>
<th>$S''(0)$</th>
<th>$-\theta'(0)$</th>
<th>$-f'(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.0312239</td>
<td>0.3437461</td>
<td>1.260950</td>
</tr>
<tr>
<td>0.2</td>
<td>0.0371269</td>
<td>0.3210715</td>
<td>1.321422</td>
</tr>
<tr>
<td>0.3</td>
<td>0.0408457</td>
<td>0.2980915</td>
<td>1.347429</td>
</tr>
<tr>
<td>0.4</td>
<td>0.0439665</td>
<td>0.2761186</td>
<td>1.359024</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0468399</td>
<td>0.2547152</td>
<td>1.369532</td>
</tr>
</tbody>
</table>

Table 4
Effects of Le on $S''(0)$, $-\theta'(0)$, and $-f'(0)$ for $N_b = 0.3$, $N_r = 0.5$, $N_r = 0.1$, and $\lambda = 0$

<table>
<thead>
<tr>
<th>Le</th>
<th>$S''(0)$</th>
<th>$-\theta'(0)$</th>
<th>$-f'(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.0143592</td>
<td>0.2627161</td>
<td>0.2599934</td>
</tr>
<tr>
<td>10</td>
<td>0.0408457</td>
<td>0.2980915</td>
<td>1.347429</td>
</tr>
<tr>
<td>100</td>
<td>0.2143756</td>
<td>0.3091981</td>
<td>4.557745</td>
</tr>
<tr>
<td>1,000</td>
<td>0.7621598</td>
<td>0.3139326</td>
<td>14.63052</td>
</tr>
</tbody>
</table>

Table 5
Effects of λ on $S''(0)$, $-\theta'(0)$, and $-f'(0)$ for $N_b = 0.3$, $N_r = 0.5$, $N_r = 0.1$, and $Le = 10$

<table>
<thead>
<tr>
<th>λ</th>
<th>$S''(0)$</th>
<th>$-\theta'(0)$</th>
<th>$-f'(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0408457</td>
<td>0.2980915</td>
<td>1.347429</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0600894</td>
<td>0.4905557</td>
<td>2.080914</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0748478</td>
<td>0.6338331</td>
<td>2.636901</td>
</tr>
</tbody>
</table>
Results from Table 4 indicate that as Le increases, the heat and mass transfer rates increase. From Table 5, we observe that as λ increases, the heat and mass transfer rates increase. Therefore, our current results indicate that nonisothermal surfaces promote higher heat and mass transfer rates in nanofluid boundary layers.

Figures 1–3 indicate that as Nr increases, the velocity decreases and the temperature and concentration increase. Similar effects are observed from Figures 4–9 as N_t and N_b vary.

Figures 10 illustrates the variation of velocity within the boundary layer as Le increases. The velocity increases as Le increases. From Figures 11 and 12, we observe that as Le increases, the temperature and concentration within the boundary layer decrease and the thermal and concentration boundary later thicknesses decrease. Figures 13–15 indicate that as the power law exponent λ increases, the velocity increases, whereas the temperature and concentration within the boundary layer decrease.

![Figure 1](image1.png)
Figure 1 Effects of Nr on velocity profiles.

![Figure 2](image2.png)
Figure 2 Effects of Nr on temperature profiles.
Figure 3 Effects of \(N_r\) on volume fraction profiles.

Figure 4 Effects of \(N_t\) on velocity profiles.

Figure 5 Effects of \(N_t\) on temperature profiles.
Figure 6 Effects of N_t on volume fraction profiles.

Figure 7 Effects of N_b on velocity profiles.

Figure 8 Effects of N_b on temperature profiles.
Figure 9 Effects of N_b on volume fraction profiles.

Figure 10 Effects of Le on velocity profiles.

Figure 11 Effects of Le on temperature profiles.
Figure 12 Effects of Le on volume fraction profiles.

Figure 13 Effects of λ on velocity profiles.

Figure 14 Effects of λ on temperature profiles.
CONVECTIVE BOUNDARY LAYER FLOW

Figure 15 Effects of λ on volume fraction profiles.

The influence of nanoparticles on natural convection is modeled by accounting for Brownian motion and thermophoresis as well as nonisothermal boundary conditions. The thickness of the boundary layer for the mass fraction is smaller than the thermal boundary layer thickness for large values of Le. The contribution of N_t to heat and mass transfer does not depend on the value of Le. The Brownian motion and thermophoresis of nanoparticles increase the effective thermal conductivity of the nanofluid. Both Brownian diffusion and thermophoresis give rise to cross-diffusion terms that are similar to the familiar Soret and Dufour cross-diffusion terms that arise with a binary fluid discussed by Lakshmi Narayana et al. [14].

CONCLUDING REMARKS

In this article, we presented a boundary layer analysis for the natural convection past a nonisothermal vertical plate in a porous medium saturated with a nanofluid. Numerical results for friction factor, surface heat transfer rate, and mass transfer rate are presented for parametric variations of the buoyancy ratio parameter N_r, Brownian motion parameter N_b, thermophoresis parameter N_t, and Lewis number Le. The results indicate that as N_r and N_t increase, the friction factor increases, whereas the heat transfer rate (Nusselt number) and mass transfer rate (Sherwood number) decrease. As N_b increases, the friction factor and surface mass transfer rates increase, whereas the surface heat transfer rate decreases. As Le increases, the heat and mass transfer rates increase. As the power law exponent λ increases, the heat and mass transfer rates increase.

REFERENCES

