Int. Comm. Heat Mass Transfer, Vol. 26, No. 5, pp. 717-727, 1999
Copyright © 1999 Elsevier Science Lid
Pergamon Printed in the USA. All rights reserved

0735-1933/99/$—see front matter

PII S0735-1933(99)00058-5

MIXED CONVECTION EFFECTS ON UNSTEADY FLOW AND HEAT
TRANSFER OVER A STRETCHED SURFACE

Ali J. Chamkha' and Camille Issa’
'Department of Mechanical and Industrial Engineering
Kuwait University
Safat, 13060 KUWAIT

*Department of Civil Engineering
Lebanese American University
Byblos - LEBANON

(Communicated by J.P. Hartnett and W.J. Minkowycz)

ABSTRACT

This work focuses on the effects of mixed convection currents on the problem of
unsteady, laminar, boundary-layer flow and heat transfer of an electrically-
conducting and heat generating or absorbing fluid over a semi-infinite vertical
stretched surface in the presence of a uniform magnetic field. The surface is
assumed to be permeable so that to account for possible fluid wall suction or
injection and that it is maintained at a variable power-law temperature and is being
stretched with a linear velocity with the distance along the surface. The governing
equations are derived based on the boundary-layer theory and using the Boussinesq
approximation. An appropriate transformation is employed and the transformed
equations are solved numerically using the finite-difference method. Comparisons
with previously published work are performed and the results are found to be in
excellent agreement. = A comprehensive parametric study is conducted and a
representative set. of graphical results for the velocity and temperature profiles as
well as the time development of the skin-friction and wall heat transfer coefficients
are reported and discussed. © 1999 Elsevier Science Ltd

Introduction

The boundary-layer flow and heat transfer situation resulting from a continously stretched
vertical surface finds application in a number of manufacturing, technological and engineering

processes.  For example, materials manufactured by -extrusion processes and heat-treated
717
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materials travelling between a feed roll and a wind-up roll or on a conveyor belt possess the
characteristics of a continuously moving surface (Vajravelu and Hadjinicolaou [1]). Other
examples of these processes include glass blowing, continuous casting, cooling of metallic sheets,
cooling of electronic chips, crystal growing, melt spinning and many others.

The classical problem of steady flow on a stretched surface extruded from a slit was first
considered by Sakiadis [2,3] who developed a numerical solution using a similarity
transformation. Erickson et al. [4] have extended the work of Sakiadis [2] by including fluid
suction or injection at the stretched surface and investigating its effects on the heat and mass
transfer in the boundary layer. Since then, many other investigators have reported on the steady-
state flow from a stretched surface moving with a velocity linearly proportional to the distance
along the surface and maintained at various wall thermal conditions (see, for instance, Crane [5],
Grubka and Bobba [6]). Vajravelu and Hadjinicolaou [1] have studied convective heat transfer in
an electrically-conducting and heat generating fluid from a linearly stretching surface with a
uniform free stream. Banks [7] and Ali [8,9] have considered power-law velocity variation of the
stretched surface with its tangential distance. Chiam [10] has reported solutions for steady
hydromagnetic flow over a surface stretching with a power-law velocity with the distance along
the surface.

All of the above investigations have been restricted to steady-state conditions. However,
in certain practical problems, the motion of the stretched surface may start impulsively from rest.
In these problems the transient or unsteady aspects become of interest. There have been some
work done on unsteady flow due to a stretching flat surface (see, for example, Surma Devi et al.
[11] and Lakshmish et al. [12], Takhar and Nath [13], Pop and Na [14] and Chamkha[15].
Lately, hydromagnetic flow and heat transfer problems have become more important industrially.
For example, and as mentioned by Vajravelu and Hadjinicolaou [1], in many metallurgical
processes such as drawing, annealing and tinning of copper wires which involve a cooling stage,
the desired characteristics of the final product can be controlled by drawing the material through
an electrically-conducting fluid subjected to a magnetic field. In addition, heat generation or
absorption effects become significant in some applications such as those dealing with chemical
reactions, cooling of electronic equipments, and heat rejection processes. Examples of works on
continuously moving surfaces and dealing with either hydromagnetic effects or heat generation or
absorption effects or both can be found in the papers by Chakrabarti and Gupta [16], Takhar et
al. [17], Kumari et al. [18], Vajravelu and Rollins [19], Vajravelu and Hadjinicolaou [1], and
Chamkha [20].

The effects of thermal bouyancy on the unsteady flow and heat transfer characteristics of
a stretched permeable surface in the presence of hydromagnetic and heat generation or absorption
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effects have not been studied. Therefore, this is the objective of this work. The surface velocity
and temperature are assumed to vary linearly with the distance along the surface. In addition, the
flow is assumed laminar and the magnetic Reynolds number is assumed to be small so that the
induced magpnetic field can be neglected.

Governing Equations

Consider unsteady, incompressible, hydromagnetic, mixed convection, boundary-layer
flow of an electrically-conducting and heat-generating or absorbing fluid over a non-isothermal
vertical permeable surface stretched with a linear velocity with the distance along the surface. A
uniform magnetic field is applied in the direction normal to the surface. The coordinate system is
such that x represents the vertical distance or the distance along the surface and y represents the
horizontal distance or the distance normal to the surface. The governing equations for this
problem are based on the balance laws of mass, linear momentum, and energy modified to
account for the presence of the magnetic field, thermal bouyancy, wall suction or injection, and
the heat generation or absorption effects. These can be written as
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where t, x and y represent time, tangential distance or distance along the surface, and normal
distance, respectively. u, v, and T are the fluid tangential velocity, normal velocity, and
temperature, respectively. v, p, o, and ¢ are the fluid kinematic viscosity, density, electrical
conductivity, and specific heat, respectively. B and g are the thermal expansion coefficient and
the acceleration due to gravity, respectively. B,, T, a, and Q, are the magnetic induction,
ambient temperature, thermal diffusivity of the fluid, and the dimensional heat generation or
absorption coefficient, respectively. It should be mentioned here that positive values of Q,
indicate heat generation (source) and negative values of Qg correspond to heat absorption (sink).

The corresponding initial and boundary conditions for this problem can be written as
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U(O: x) Y) = ax’ V(O: X’ Y) = 0’ T(Or X, ) = Tw + Ax
u(ti X!O) = ax’ V(t’ X,O) = .—VO ’ T(t’ x’O) = TW = Tu: + A'x (4)
u(t,x,0)=0, T(,x,®)=T, '

where “a” and A are positive constants and vy (>0) is the suction velocity.

The governing equations are nondimensionalized and transformed by substituting the
following dimensionless variables

t of
=2 y=afvin s ©)

v=-2afvt f(r,n), T=T,+(T, -T.)8(tn)

into Equations (1) through (3) to give
af' ” ! ’ Gr
f"'+2T]f"—4‘EE'+4aT(ff —-(f)' -M*f +R—e29)=0 ©)
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with Equation (1) being identically satisfied. In Equations (6) and (7), a prime indicates
differentiation  with respect to m and M=B,\o/(pa), $=Q, /(pca),
Gr=gB(T, ~T,)x*/v?, and Re=ax’/v are the Hartmann number, the dimensionless heat

generation or absorption coefficient, the Grashof number, and the Reynolds number, respectively.

The transformed initial and boundary conditions become

£'(0,m)=1, £f(0O,m)=0, B(0,n)=1
f'(1,0)=1, f(x,0)=f,, 8(1,0)=1 ®)
f'(t,0)=0, O(t,0)=0

where f, =v,/(2a/vt) is the dimensionless wall normal velocity such that f, > 0 represents
suction and f, < 0 represents injection at the surface.

Of special significance for this type of flow are the skin-friction coefficient and the wall
heat transfer coefficient. These physical parameters can be defined in dimensionless form as
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e L
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where k is the thermal conductivity of the fluid.

Results and Discussion

The initial-value problem represented by Equations (6) through (8) is nonlinear and must
be solved numerically. Since the standard, implicit, iterative, finite-difference method discussed
by Blottner [21] has proven to be successful at producing accurate results for this type of
equations, it is adopted in the present work.

The computational domain is divided into 196 by 196 nodes in the t and 7 directions,
respectively. Since the changes in the dependent variables are expected to be significant in the
immediate vicinity of the surface while these changes decrease significantly as the distance far
from the wall increases, variable step sizes in the iy direction are used. For the same reasons,

variable step sizes in the 7 direction are also employed. The initial step sizes employed were
An; = 0001 and At; =0001 and the growth factors were Ky, =103 and K =103 such that

Ang =Ky, Ang; and Aty =K; Atp_;.  The convergence criterion required that the

difference between the current and the previous iterations be 10-5 in the present work. In this
numerical method, the governing equations are linearized by proper evaluation of non-linear
terms at the previous iteration. Backward-difference approximations are used for the first
derivatives with respect to t while the second-order differential equations are replaced by three-
point central-difference quotients. As a result, linear algebraic equations are obtained at each line
of constant t. These equations are then solved by the well known Thomas algorithm. For more
details on the numerical procedure, the reader is advised to read the paper by Blottner [21].

Figures 1 and 2 present typical steady-state velocity f' and temperature 6 profiles for
various values of the mixed convection parameter Gr/Re? respectively. For convenience, the
value of “a” is set to unity in these and all subsequent figures. The case in which Gr/Re? =0
corresponds to the forced-convection regime while that in which Gr/Re? is very large (Gr/Re?
=100) corresponds to the free-convection regime. The presence of the thermal bouyancy effects
represented by finite values of Gr/Re’ (Gr/Re’ 20) has the tendency to induce more flow along
the surface at the expense of small reduction in temperature. This is reflected in the increases in
f’ and slight decreases in © as Gr/Re’ increases shown in Figures 1 and 2, respectively.
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Distinctive peaks in the velocity profiles which are characteristics of free-convection flows are
also observed for large values of the mixed-convection parameter Gr/Re? in Figure 1.
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FIG. 1
Effects of Gr/Re? on Velocity Profiles
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FIG. 2
Effects of Gr/Re* on Temperature Profiles

Figures 3 and 4 depict time histories for the skin-friction coefficient C and the wall heat
transfer q for various values of the mixed-convection parameter Gr/Re? , respectively. For
convenience, all the results for C and q in these and all subsequent figures are divided by the
factor 2vT. As observed from Figures 1 and 2, while the slopes of the velocity profiles at the
wall increases as Gr/Re’ increases, the wall slopes of the temperature profiles remain almost
constant. This produces reductions in the skin-friction coefficient for all times (1>0) as Gr/Re*
increases while the wall heat transfer remains almost unchanged. Also, and as expected, both the
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wall shear stress and heat transfer decrease as T increases. These facts are evident from Figures 3
and 4. It is worth noting that in the absence of the effects of bouyancy (Gr/Re’ =0), magnetic
field (M=0), and wall suction or injection (f, =0), the steady and unsteady flow solutions were

roughly compared with those of Pop and Na [14] and were found to be in excellent agreement.
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Effects of Gr/Re® on Skin-Friction Coefficient Time History
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Effects of Gr/Re’ on Wall Heat Transfer Coefficient Time History

Figures 5 and 6 illustrate the effects of the suction or injection parameter f,, the

Hartmann number M, the Prandtl number Pr, and the heat generation or absorption coefficient ¢
on the velocity and temperature profiles, respectively. The parametric conditions for each curve

appearing in these and all subsequent figures are given in Table 1. Imposition of fluid suction
(f, > 0) at the wall causes a reduction in the flow velocity along the surface as well as in the flow
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temperature. On the other hand injection of fluid at the surface produces the opposite effect ,

namely increases in both the flow velocity and temperature. These behaviours are reflected by
the decreases in f' and © as f, increases shown in Figures 5 and 6. As for the effect of the

magnetic field, it is known by now that application of a magnetic field in the direction normal to
the flow produces reductions in the flow velocity and increases in its temperature. This is

depicted by the decreases in f’ and increases in 6 as M increases displayed in Figures 5 and 6.
These figures also show that as the heat generation or absorption coefficient ¢ increases, the flow

temperature decreases causing a reduction in the flow velocity. However, as the Prandt] number

Pr increases, the flow temperature and, therefore, the flow velocity decreases.

TABLE 1

Parametric Conditions for Curves in Figures 5 through 8.

Curve f M Pr [}
) 0 0 6.7 0

il 0 3 6.7 0
i1 -1 0 6.7 0
v 1 0 6.7 0

\% 0 0 6.7 -1
VI 0 0 6.7 1
VII 0 0 10 0
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n
FIG. 5
Effects of f;, M, Pr and ¢ on Velocity Profiles
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FIG. 6
Effects of f, M, Pr and ¢ on Temperature Profiles

The influence of f, , M, Prand ¢ on the skin-friction and wall heat transfer coefficients
are displayed in Figures 7 and 8, respectively. It is seen that both the skin-friction and wall heat
transfer coefficients increase as either f, , M, Pror ¢ increases. It is worth noting that for the
case of suction (f, > 0) both C and q initially decrease and later increase as time progresses.
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FIG. 7
Effects of fo, M, Pr and ¢ on Skin-Friction Coefficient Time History
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FIG. 8
Effects of f, M, Pr and ¢ on Wall Heat Transfer Coefficient Time History

Conclusion

This work focused on the bouyancy and wall suction or injection effects on the problem of
unsteady, laminar, hydromagnetic mixed convection boundary-layer flow of an electrically-
conducting and heat-generating or absorbing fluid over a non-isothermal vertical stretching
permeable surface. The governing equations are transformed and solved numerically by an
implicit finite-difference method. Comparisons with previously published work were performed
and the results are found to be in excellent agreement. It was found that the wall shear stress
increased as either of the Hartmann number, wall suction velocity, or the heat generation
coefficient increased while it decreased as the mixed convection parameter increased. In addition,
the wall heat transfer was increased as either of the Prandtl number, Hartmann number, surface
suction velocity or the heat generation coef ficient was increased. However, the surface heat
transfer remained almost constant as the mixed convection parameter changed.
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