International Journal of Fluid Mechanics Research, Vol. 26, Nos. 5 & 6, 1999

Oscillatory Natural Convection Flow of a Two-Phase Suspension
over a Surface in the Presence of Magnetic Field
and Heat Generation Effects
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A continuous two-phase flow and heat transfer model is derived taking into
account natural convection currents and is applied to the problem of laminar,
hydromagnetic, oscillatory flow of a Newtonian, electrically-conducting, and
heat generating or absorbing fluid with solid, monodispersed spherical suspended
particles over a vertical infinite surface. The surface is assumed permeable so as
to allow for possible wall fluid- and particle-phase suction or blowing and is
maintained at a constant temperature. A uniform magnetic field is applied in the
direction normal to that of the flow. The free stream velocity oscillates about a
constant mean value. The solid particles and the vertical surface are assumed to
be electrically non-conducting and the particle-phase density distribution is
assumed to be uniform. In addition, the particle-phase is assumed to have an ana-
log pressure and is endowed by a viscosity. Furthermore, the fluid phase is
assumed to have temperature-dependent heat generation or absorption effects. In
the absence of viscous dissipations of both phases, Joule heating, drag-type work,
and the Hall effect of magnetohydrodynamics, the derived governing equations
are solved analytically for the velocity and temperature profiles of both phases
using the regular perturbation technique. The analytical results are compared with
previously published work and are found to be in excellent agreement. The effects
of the Grashof number, Hartmann number, particle loading, Prandtl number, heat
generation or absorption coefficient, viscosity ratio, and the particulate wall slip
on the velocity and temperature fields of both phases are illustrated graphically to
show interesting features of the solutions.

* Kk 3k

Introduction

In recent years, there has been a renewed exploration for new ideas harnessing various conven-
tional energy sources like tidal waves, wind power, geothermal energy, nuclear reactor and many
others (Hiremath and Patil [1]). It is known that for optimizing the use of geothermal energy, it is
necessary to have a precise knowledge of the perturbations needed to generate convection currents
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in geothermal fluids. Contamination of these fluids with solid particles has the tendency to affect
the heat transfer characteristics of these fluids and, therefore, the use of the geothermal energy. In
certain processes, these solid particles can be placed in the system deliberately or naturally. The
analysis of the flow and heat transfer aspects of a two-phase particulate suspension requires the
consideration of the balance laws of mass, linear momentum, and energy equations of both the fluid
and particle phases. Assuming both phases as interacting continua, these equations will be coupled
through interphase drag and heat transfer.

The geothermal fluids are electrically conducting and are affected by the presence of a mag-
netic field (Aldoss et al. [2]). Also, electrically-conducting fluids in the presence of a magnetic field
are often used for the purpose of cooling of nuclear reactors and suppression of convective currents
in the semi-conductor industry. Other possible applications of hydromagnetic flows are heat
exchangers, magnetohydrodynamic (MHD) generators, cooling and quality control of many metal-
lurgical processes such as drawing of continuous filaments through electrically-conducting fluids,
and annealing and tinning of copper wires and others. In addition, certain situations may involve
heat generation or absorption aspects such as those dealing with fluids undergoing exothermic or
endothermic chemical reactions (Vajravelu and Hadjinicolaou [3]). The presence of these character-
istics for the carrier fluid along with the effect of particle loading in a fluid-particle suspension can
alter the flow and heat transfer features significantly. Therefore, the purpose of this work is to con-
sider unsteady, laminar, hydromagnetic, oscillatory fluid-particle flow over a vertical, permeable,
infinitely long plate in the presence of fluid buoyancy and heat generation or absorption effects.

Chamkha and Ramadan [4] have reported steady state analytical solutions for laminar free con-
vection two-phase (fluid-particle) flow over a vertical infinite permeable plate. They have shown
that the presence of particles in the carrier fluid causes significant changes in the flow and heat
transfer characteristics.

Raptis and Perdikis [5] have studied oscillatory flow of a Newtonian fluid through a porous
medium in the presence of free convection currents. Also, Hiremath and Patil [1] have considered
free convection effects on the oscillatory flow of a couple stress fluid through a porous medium and
have reported some results for the case of a Newtonian fluid. Since the presence of a magnetic field
results in a linear drag-like resistive force in the momentum equation as in the case of flow in a Dar-
cian porous medium, then the results of Raptis and Perdikis [5] and Hiremath and Patil [1] can be
used for comparison as a limiting case of the general problem of this work when the particle load-
ing and heat generation or absorption effects are omitted from the model.

The following referenced work can not be used for comparison but they represent some of the
work done on oscillatory flow and their application. Levesley and Bellhouse [6] have reported on
the retention and suspension of particles in a fluid using oscillatory flow within a straight channel.
The degree of retention of particles was experimentally correlated with the frequency and ampli-
tude of the applied oscillation. Smith [7] has analyzed slow oscillatory Stokes flow. Hall et al. [8]
have compared oscillatory and stationary flow through porous media. The empirical coefficients
determined from steady stationary flow were generally found to apply to the unsteady flow situa-
tion with some dependence on the period of oscillations. Foote et al. [9] have reported some exact
solutions of the Stokes problem for an elastico-viscous fluid using the Taylor series expansion
which compared with the pertubation solutions obtained in some earlier investigations. The prob-
lem of oscillatory flow in a stratified medium past an infinite porous plate with constant suction
was considered by Soundalgekar and Shende [10]. Duck and Bodonyi [11] have analyzed oscilla-
tory flow over a semi-infinite plate at low Reynolds numbers. Mazumdar and Das [12] studied dis-
persion of contaminants in oscillatory flow through a pipe. The purpose of this work is to consider
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oscillatory two-phase (fluid-particle) natural convection flow over an infinite permeable vertical
plate or surface in the presence of magnetic field and heat generation or absorption effects.

Problem Formulation

Consider unsteady, laminar two-dimensional natural convection flow of a two-phase particu-
late suspension over an infinitely long vertical permeable surface in the presence of a transverse
magnetic field. Uniform fluid-phase suction (or injection) is imposed at the surface which is main-
tained at a uniform temperature 7,,. Far from the surface, the suspension (fluid plus particles) oscil-
lates about a mean value with direction parallel to that of the surface. The two-phase flow takes
place in the xy plane with the surface being placed at y = 0. The x-axis is taken along the surface
with the positive direction being opposite to the direction of gravity and the y-axis is taken to be
normal to the surface (see Fig. 1). A magnetic field of uniform strength is applied normal to the
plate or surface which affects the electrically-conducting fluid phase. However, the particle phase
will be affected by the magnetic field indirectly through the drag force existing between the fluid
and particle phases. The magnetic Reynolds number is assumed to be small so that the induced
magnetic field is neglected. Also, no electrical field is assumed to exist and the effects of Joule
heating and viscous dissipations of both phases as well as the Hall effect are assumed negligible. In
addition, the fluid-phase heat generation or absorption effects are assumed to be temperature
dependent. All fluid and particle-phase properties are assumed to be constant except the fluid-phase
density in the buoyancy term of the x--momentum equation. Since the plate or surface is infinite, all
of the dependent variables of the problem will only depend on the y-direction and time ¢. Assuming
that the Boussinesq approximation is valid and treating the particle phase as a continuum, the gov-
erning equations for this investigation, with all of the previously-stated assumptions taken into con-
sideration, can be written as
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Fig. 1. Physical model and coordinate system.
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where ¢ stands for time and x and y represent distances along and normal to the surface, respectively.
u, v, P, and T are the fluid-phase x-component of velocity, y-component of velocity, pressure, and
temperature, respectively. p, |1, ¢, and k are the fluid-phase density, dynamic viscosity, specific heat
and thermal conductivity, respectively. ¢, B,, @,, and g are the fluid-phase electrical conductivity,
the magnetic induction, the heat generation (> 0) or absorption (< 0) coefficient, and the accelera-
tion due to gravity, respectively. N, Ny, and T,, are the interphase momentum transfer coefficient,
interphase heat transfer coefficient, and the free stream temperature, respectively. A subscript p
denotes the same property for the particle phase. It can be clearly seen from Egs. (2), (3), (5), and
(6) that the flow and heat transfer aspects of both phases are coupled through the interphase drag
and heat transfer mechanisms.
The physics of the problem suggests the following boundary conditions:

u(2,0)=10 v(t,0)==-v, u,(t,0)=0 v, (t,0)=-v,
ou .
a—;(t, 0) =W up(t,O)

T(t,0)=T, T(t,»)=T,(t,>)=T.,

u(t, =) =u,(t,e)=U, =U"(1+ e exp(in’t)) (7a-h)

where v, is the suction or injection velocity, ®* is a particle-phase wall slip coefficient, £ is a pertur-
bation parameter, n* is the frequency of oscillations and “#” is the complex parameter. It should be
mentioned that the exact form of boundary conditions to be satisfied by the particle phase at the
surface are unknown at present. However, there is some experimental evidence that a particle tends
to slip at a wall. For this reason and because the motion of the particle phase which consists of
discrete particles may resemble that of a rarefied gas, the form given in Eq. (7¢) is employed. This
type of boundary conditions is used in rarefied gas dynamics and it allows for perfect slip situations
for " = 0, for no-slip situations for ®* = e, and for moderate slip situation for finite values of ®*.
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In addition, it can be seen from Egs. (7g) and (7h) that both the fluid and the particle phases are in
both hydrodynamic and thermal equilibrium.
Evaluating Eqgs. (2) and (5) at the free stream conditions (y = eo) gives:

du, oP
e | = B2U. 8
p(dt] 8 g~ GB3U. ®
au., opP
PP(TJ:‘E}—;—P[& 9)

where p, is the free-stream density for the fluid phase. By eliminating the pressure gradients from
Eqgs. (2) and (8) as well as from (5) and (9) yields

p(a“ au] %“h Pl + 083 U —)+utap, Ny, -u)  (10)

a 9 o

ou, du,, du,, 0%u,
p”( a e ay) Pr=g THp ay—z+PpN(u—up) (11)

Applying the Boussinesq approximation

P. —p=pB,(T-T..) 12)

(where By, is the thermal expansion coefficient) in Eq. (10) reduces it to

du.,
p@‘t‘ vgu] —u)+uay2+pp N(u, -u) (13)

Thus, the governing equations for this problem include Egs. (1), (3), (4), (6), (11), and (13).
With the particle-phase density p, being constant, Egs. (1) and (4) are integrated subject to the
boundary conditions for v and v, to give
v=v,=-v, (14)
It should be mentioned that the y-momentum equations which are not written here for brevity
require that v and v, be equal. In this way both of these equations will be identically satisfied.
It is convenient to use the following parameters

2
T‘l:yvo thv—o F:u* U:Uo:
v v U U
T-T, T,-T, u, nv
esz—Tm e"sz—T Fp=ﬁ n=v2 (15)

to non-dimensionalize the governing equations and boundary conditions. Doing this yields

647



2
_____ +Gr9+M2(U_F)+%n—f+Koc(Fp -F)

ot on dr
30 _90_ 1020 _
e ran—2+¢6+KocTy(9p 0)

oF, oF, gy 9°F
p P _ p
—L-=L=22+p—L+alF-F,)

00
_&__P=aT(e_ep)

ot dn

oF,
F(t,0)=0 W(T’ 0) = oF,(7,0) 0(t,0) =1

F(T,00) = F,(T,00) = 1+ gexp(in 1) 8(T,0) = 8,(1,0) =0
where
Gr BT =LY L oB
U’v? pv2 o}
Mv ue Q,v Npv
o =— P = — = —_—— o, =
oo Y T T
¢p Vp o'v n'v
= — = — w= n=
v c B Y v, v2

(16)

)

(18)

19

(20)

€2y

are the Grashof number, square of the Hartmann number, particle loading, velocity inverse Stokes
number, Prandtl number, dimensionless heat generation or absorption coefficient, temperature
inverse Stokes number, ratio of specific heat, viscosity ratio, dimensionless particle-phase wall slip

coefficient, and the dimensionless frequency of oscillations, respectively.

Analytical Solutions

In this section, closed-form solutions based on the perturbation method for the dimensionless
governing Egs. (16) through (19) subject to the boundary conditions (20} will be reported. The per-

turbation method is applied by assuming

F(t,m)=F,(n)+¢ exp(in1)F(n)

Fp (Ts T‘) = Fpo (n) te exp(in T)Fpl (n)
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8(t,m)=0,(n) + € exp(in 1) 6;(n)

0,(t,n)=6,,(n) + eexp(int) 8, M)

(22)

Substituting Eqs. (22) into Eqgs. (16) through (20) results in two sets of equations and boundary
conditions. The first set governs the basic steady flow with subscript o and the second set governs
the unsteady oscillatory flow with subscript 1. These sets of equations and boundary conditions can

be written as

F}'+F}+Ka(F,, — F,)- M?(F, -1)+Gr8, = 0

1 77 ’
500+ 6, + Koy 1(0,0 —0,)4+06,=0
BE. + Fp, +alF, - F,,)=0
e;zo + 0y (eo - epo )= 0
F0=0  F,(0)=0F,0  6,0)=1
Fo(0) =1 Fpo(ee) =1 8,(=) =0 0,0() =0
for the basic steady flow and heat transfer problem, and

F'+ F/+Ko(F,, - F,)- M2(F, =1)+ Gr6, +in(1- F) = 0

I)l-re;'+ 0] + Koy y(8,, — 6, )+ 08, —in8, =0

B+ Fpy +olFy — Fjy )+ in(l— F, )= 0

0, +ar (6, -0, )-in6,=0

=

F(0)=0  F,(0)=wF,(©0)  (0)=0

F(=) =1  Fu(=)=1  8,(=)=0  8,(=)=0

(23)

24

(25)

(26)

@7

(28)

(29)

(30)

@3N

(32

for the unsteady oscillatory and heat transfer problem. In Egs. (23) through (32), a prime denotes
ordinary differentiation with respect to 1. It is obvious from the above two sets of equations that the
solution of the basic steady flow problem is uncoupled from the solution of the unsteady oscillatory

flow problem and, therefore, they can be solved separately.
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The governing equations for the basic steady flow and heat transfer problem and the unsteady
oscillatory flow and heat transfer problem are ordinary, linear, differential equations which lend
themselves to be solved in closed form subject to the appropriate boundary conditions. For each of
these problems the flow field is not only coupled by the presence of the particle phase through the
drag force but also with the heat transfer problem through the fluid-phase buoyancy effects. These
coupling effects make obtaining the analytical solutions more involved.

Combining Egs. (24) and (26) yields a third-order linear homogeneous equation governing 0,
Without going into detail, this can be shown to be

05, +(Pr—oy )0, +Pr(¢ — oy — Kyor )65, — (Proc;)8,, =0 (33)

0

Equation (33) is solved subject to the appropriate boundary conditions given by Egs. (27) to yield
6,, (N)= 4, exp(- mm) my == my (34
where
4y =0 /(o +my)
and m," is the negative root of the auxiliary equation
m3 +(Pr—o; )m? +Pr(¢- o, —Kya; ym—Proo, =0 (35)

It should be mentioned here that the physical solution for Eq. (35) is having only one negative root.
More than one negative root will lead to undetermined constants. Also, three positive roots will lead
to a trivial solution and the presence of a vanishing root obtains a vanishing constant in the solution
when applied at 1| = <. It should be mentioned that in all the graphical results to be reported in the
next section, this condition is satisfied.

The relation between 6, and 6,,, is given by

1 .
0, =0, —&-T-epo (36)

Therefore, substituting the solution for 0,, (Eq. (34)) into Eq. (36) yields the solution for 6, as
follows

0,(n) = exp(—mn) (37

Similarly, combining the equations governing F, and F,,, yields a fourth-order, linear, non-homoge-
neous differential equation which can be shown to be

BELY +(1+B)Fp+[1- 0 — B(Ka+ M2)] Fy, —[o(1+ K) + M2]F},

+ M*0F,, =aM? +Gros, (38)
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The general solution of this equation will consist of two parts, a homogeneous and a particular
part. The auxiliary equation for the homogenous part of Eq. (38) is given by

Bm* + (1 +Bm3 +[1 —o—B(Ko+ M2)|m? -[a(l+K)+M?]m+ M2a=0 (39)

A physically acceptable solution of Eq. (39) requires Eq. (39) to have two negative and two posi-
tives roots. Having roots that do not satisfy this condition will produce unrealistic solutions. Unfor-
tunately, there is no way to show that Eq. (39) satisfy this condition for any values of the parameters
involved in the equation. However, this condition was observed to be satisfied in all of the graphical
results to be reported in the next section.

Let the two negative roots to be (-m,) and (-m;). The homogeneous solution for F,, can be
shown to be

(F,,), = 4 exp(= m,n)+ 45 exp(- m;n) (40)

where A, and A; are arbitrary constants to be determined by the boundary conditions. Substituting
the solutions for 6, (Eq. (37)) into Eq. (38) and solving for the particular solution for F, o 8lVes

(Fyp), =1+ 44 exp(= mm) 1)

where

Gra

A4, = 42)
YT Bmf + (1 +Bmd +[(1 - o) B(Ko+ M2)]m? - [a(l + K)+ M2 ]|m, + M2a.
Thus, the general solution for F, o becomes
Fp,(M)=1+ 4, exp(-m,n)+ 43 exp(-msn) + 4, exp(—mn) (43)

The arbitrary constant A, and A, are obtained by the application of the appropriate boundary condi-
tions in Egs. (27) to yield

_Vilo(d, +1)+ dym |- (@+m3 XZ, +1)

4, = 44
2 (0+m;3) X, —(0+m;)1; “o
4 =Xl [w(4, +1)+ A,m,]-(0+m, )(Z, +1) 4s)
3 (0+m,)Y, — (0+m;) X,
where

2 2
x =142 By g me Bmy 46)

o o o o

The solution for F, is obtained from the solution
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B 77 1 ’
Fy=Fpy = o Fp =~ F, @é7)

Taking the necessary derivatives and substituting of Egs. (43) through (46) into Eq. (47) gives
F,(n)=1+ X, 4, exp(-m,n)+ Y, 4; exp(-m3n)+ Z, exp(-mn) (48)

With the solution for F,, 6, F,,, and 8,, known, then the basic steady flow problem is deter-
mined. The solution for the unsteady oscillatory part can be found in a very similar fashion. With-

out going into detail, the solutions for 6, 8, F;, and F,; can be shown to be

124
0,(M)=6,,(n)=0 49)
F,i(n) =1+ 45 exp(-=myn)+ 4¢ exp(~msn) (50)
Fi(n)=1+ X, 45 exp(-myn) + Y, 45 exp(-msn) (51

where (-m,) and (—m;) are the only two negative roots of the auxiliary equation

Bm* + (1+B)m3 —[ot + in— 1+ B(Kou+ M2 )+ inB]m?

— [o+2in+ Ko+ M2 m+in+ Ko+ (o+in)(in+ M2 )= 0 (52)
where
Y, -1)-
= oY, —1)-m; (53)
(0+ms) X, —(0+m, )Y,
X, -1)-
A = (X, —1)-m, (54)
(w+my )Y, —(0+ms) X,
x, =14 B M y, =1+ _B o ms (55)
o o o

With the solutions for the steady basic flow and the unsteady oscillatory flow, the solutions for F(x,
M), F,(t, M), 8(t, ) and 6,(t, n) can be found from Eq. (22).

Results and Discussion

In this section, numerical evaluations of the analytical solutions reported in the previous sec-
tion are performed and the results are compared with previously published work and reported
graphically for various values of the parameters involved in the problem. This is done in order to
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Fig. 2. (a) Comparison of velocity profile with Raptis and Perdikis (1985).
(b) Comparison of velocity profile with Hiremath and Patil (1993).
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Fig. 3. Effects of n1 on fluid-phase velocity profiles.  Fig. 4. Effects of nt on particle-phase velocity profiles.

illustrate the behaviors and features of the flow and thermal problem of both the fluid and the parti-
cle phases. Figures 2 through 24 present a representative set of these results.

Figures 2a and 2b present comparisons of the fluid-phase velocity profiles for the case of a
dilute suspension (K = 0) and in the presence of a magnetic field with those reported by Raptis and
Perdikis [5] and Hiremath and Patil [1] for cooling and heating surface situations. It should be
noted that the presence of the magnetic field has the same effect as that associated with a porous
medium since both mechanisms cause resistance to flow. It can be clearly seen from these figures
that excellent agreements between the results exist.

Figures 3 and 4 present representative profiles for the fluid-phase velocity profiles F and the
particle-phase velocity profiles F, at different nt values, respectively. For a fixed value of 7,
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increases in the frequency of oscillations n have the effect of decreasing the flow of both the fluid
and particle phases at every point away from the plate surface and including the free stream condi-
tions. The same can be said for fixing » and increasing T. This is evident by the decreases of both F
and F, as nt is increased in Figs. 3 and 4.

Figures 5 through 8 depict the behaviors of the fluid- and particle-phase velocity profiles (F and
F,) and the fluid- and particle-phase temperature profiles (8 and 8,,) for various values of the particle
loading K for Gr = 2 which physically corresponds to cooling of the surface by free convection cur-
rents, respectively. It is seen that the presence of particles in this oscillatory flow acts as an aiding flow
mechanism by which the velocities of both phases increase as the particle loading increases.

Figures 9 and 10 present typical profiles for F and F), for various values of the magnetic param-
eter M, respectively. The application of the magnetic field here is observed to enhance the convec-

nt=m/2
0.80
K=0,1,3,5
0.60
w Gr=20 ut

M=00

040 Pr=3.0
o=10
oy=1.0
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020 ¥Y=10
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000 =00 oo =00

0.00 1.00 2.00 3.00 4.00 5.00 0.00 1.00 2.00 3.00 400 5.00
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Fig. 5. Effects of K on fluid-phase velocity profiles. Fig. 6. Effects of K on particle-phase velocity profiles.
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Fig. 7. Effects of K on fluid-phase temperature profiles.

Fig. 8. Effects of K on particle-phase temperature profiles.
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Fig. 9. Effects of M on fluid-phase velocity profiles.  Fig. 10. Effects of M on particle-phase velocity profiles.
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Fig.11. Effects of Gr on fluid-phase velocity profiles. Fig.12. Effects of Gr on particle-phase velocity profiles.

tive flow along the surface. This is in contrast with other applications in which the magnetic field is
used to slow down the motion of the fluid. It should be mentioned that the same effect of increased
flow predicted by Hiremath and Patil (1993) by using a porous medium which has the same influ-
ence as a magnetic field.

The effects of the Grashof number Gr on the velocity profiles of both phases F and F, are given
in Figs. 11 and 12, respectively. In these figures, situations of surface heating (Gr < 0), surface cool-
ing (Gr > 0) and non-free convection flow are illustrated. It is seen that increases in the values of Gr
increase the velocities of both phases at every point from the wall. This is expected since increasing
Gr increases the buoyancy effect which induces flow along the surface.

Figures 13 and 14 show the behaviors of F and F), as the viscosity ratio B is altered, respec-
tively. It should be noted in these figures that the particle-phase wall slip coefficient  is set to unity
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which means that the particle phase undergoes a moderate wall slip condition. This is evident from
the wall velocities for the particle phase in Fig. 14. Increases in the values of B have the tendency to
increase the particle-phase viscous effects. This has the effect of reducing the velocity of the parti-
cle phase. This decelerated motion in the particle phase causes the fluid phase to slow down as well.
This is due to the interphase drag force existing between the phases. These behaviors are clearly
illustrated in Figs. 13 and 14.

The effects of the particle-phase wall slip coefficient @ on the profiles of F and F), are dis-
played in Figs. 15 and 16, respectively. It is clear from these figures that while ® has a slight
decreasing effect on the profiles of F (for K = 1), it has a significant retardation effect on the pro-
files of F, especially close to the surface. The limiting situations of perfect slip (@ = 0) and no-slip
(o = 10000) at the wall are evident from Fig. 16.

Figures 17 through 20 display the influence of the heat generation (source) or absorption (sink)
coefficient ¢ on the profiles of F, F,, 6, and 6,, respectively. Obviously, heat generation (¢ > 0)
causes the temperatures of the fluid phase and the particle phase through interphase heat transfer to
increase. This increase in the fluid temperature 6 enhances the buoyancy effects for Gr > 0 which
cause higher induced flow than for the case of ¢ = 0. Through the interphase drag between the
phases, the particle-phase velocity increases as well. Conversely, heat absorption (¢ < 0) reduces
the temperatures of both phases and, therefore, the velocities of the fluid and particle phases as well
for Gr > 0. These physical behaviors are clearly depicted in Figs. 17 through 20.

Finally, the effects of the fluid Prandt] number Pr on the profiles of F, Fp, 0, and ep are given in
Figs. 21 through 24, respectively. Increases in the values of Pr have the tendency to reduce the
fluid-phase thermal layer thickness and, therefore, its temperature. As a result, the particle-phase
temperature decreases by the action of the interphase heat transfer existing between the phases. As
mentioned before, this reduction in the fluid-phase temperature results in fluid-phase flow retarda-
tion effect and, therefore, lower particle-phase buoyancy-induced flow by the free convection cur-
rents. It is worth noting that for Pr = 0.71 distinctive peaks in the velocity profiles of both phases
exist at | = 1.4 for which the values of F and F, overshoot above their free stream values. This is
believed to be related to the higher temperature values of both phases predicted for Pr=0.71. These
facts are evident from Figs. 21 through 24,
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Fig. 13. Effects of P on fluid-phase velocity profiles.  Fig. 14. Effects of B on particle-phase velocity profiles.
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Fig. 15. Effects of w on fluid-phase velocity profiles.  Fig. 16. Effects of  on particle-phase velocity profiles.
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Fig. 17. Effects of ¢ on fluid-phase velocity profiles.  Fig. 18. Effects of ¢ on particle-phase velocity profiles.
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Fig. 19. Effects of ¢ on fluid-phase temperature profiles. Fig. 20. Effects of ¢ on particle-phase temperature profiles.
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Fig. 21. Effects of Pr on fluid-phase velocity profiles. Fig. 22. Effects of Pr on particle-phase velocity profiles.

n

Fig. 23. Effects of Pr on fluid-phase temperature profiles. Fig. 24. Effects of Pr on particle-phase temperature profiles.

Summary and Conclusion

The problem of laminar, hydromagnetic, oscillatory natural convection fluid-particle flow over a
vertical infinite surface was modeled using a continuum two-phase flow approach. The fluid phase was
assumed to be electrically conducting and heat generating or absorbing and the particle phase was
assumed to consist of monodispersed spherical particles having a uniform density distribution. The
surface was assumed permeable so as to allow for possible wall fluid- and particle-phase suction or
blowing and is maintained at a constant temperature. A uniform magnetic field was applied in the
direction normal to that of the flow. The free stream velocity of both phases oscillated about a constant
mean value. The solid particles and vertical surface were assumed to act as electrical insulators. In
addition, the particle-phase was assumed to have an analog pressure and was endowed by a viscosity.
Furthermore, the fluid-phase heat generation or absorption effects were assumed to be tempera-
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ture-dependent. In the absence of viscous dissipation of both phases, Joule heating, drag-type work,
and the Hall effect of magnetohydrodynamics, the derived governing equations were solved analyti-
cally for the velocity and temperature profiles of both phases using the regular perturbation technique.
The analytical results were compared with previously published work and were found to be in excel-
lent agreement. The effects of the Grashof number, Hartmann number, particle loading, Prandtl num-
ber, heat generation or absorption coefficient, viscosity ratio, and the particulate wall slip on the
velocity and temperature fields of both phases were illustrated graphically to show interesting features
of the solutions. It was found that increasing either of the particle loading, magnetic field strength,
Grashof number, or the heat generation or absorption parameter caused the velocities of both phases to
increase. On the other hand, increasing either of the viscosity ratio, particle-phase wall slip coefficient,
frequency of oscillations or the Prandtl number produced reductions in the velocities of both phases.
Moreover, increasing the heat generation or absorption coefficient resulted in increases in the tempera-
ture fields of both phases while increasing either of the particle loading or the Prandtl number pre-
dicted reductions in both the fluid- and particle-phase temperatures. It is hoped that the results obtained
herein be of use for validation of more complex problems dealing with oscillatory two-phase flows.
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