Unsteady laminar hydromagnetic fluid–particle flow and heat transfer in channels and circular pipes

Ali J. Chamkha
Department of Mechanical and Industrial Engineering, College of Engineering and Petroleum, Kuwait University, P.O. Box 5969, 13060 Safat, Kuwait

Received 15 October 1998; accepted 4 April 2000

Abstract

The problem of unsteady laminar flow and heat transfer of a particulate suspension in an electrically conducting fluid through channels and circular pipes in the presence of a uniform transverse magnetic field is formulated using a two-phase continuum model. Two different applied pressure gradient (oscillating and ramp) cases are considered. The general governing equations of motions (which include such effects as particulate phase stresses, magnetic force, and finite particle-phase volume fraction) are non-dimensionalized and solved in closed form in terms of Fourier cosine and Bessel functions and the energy equations for both phases are solved numerically since they are non-linear and are difficult to solve analytically. Numerical solutions based on the finite-difference methodology are obtained and graphical results for the fluid-phase volumetric flow rate, the particle-phase volumetric flow rate, the fluid-phase skin-friction coefficient and the particle-phase skin-friction coefficient as well as the wall heat transfer for plane and axisymmetric flows are presented and discussed. In addition, these numerical results are validated by favorable comparisons with the closed-form solutions. A comprehensive parametric study is performed to show the effects of the Hartmann magnetic number, the particle loading, the viscosity ratio, and the temperature inverse Stokes number on the solutions.

1. Introduction

The importance and application of solid/fluid flows and heat transfer in petroleum transport, wastewater treatment, combustion, power plant piping, corrosive particles in engine oil flow, and many others are well known in the literature. Particularly, the flow and heat transfer of electrically conducting fluids in channels and circular pipes under the effect of a transverse magnetic field occurs in magnetohydrodynamic (MHD) generators, pumps, accelerators, and flowmeters and has possible applications in nuclear reactors, filtration, geothermal systems, and others. The possible presence of solid particles such as ash or soot in combustion MHD generators and plasma MHD accelerators and their effect on the performance of such devices led to studies of particulate suspensions in conducting fluids in the presence of magnetic fields. For example, in an MHD generator, coal mixed with seed is fed into a combustor. The coal and seed mixture is burned in oxygen and the combustion gas expands through a nozzle before it enters the generator section. The gas mixture flowing through the MHD channel consists of a condensable vapor (slag) and a non-condensable gas mixed with seeded coal combustion products. Both the slag and the non-condensable gas are electrically conducting (see, Loharsbi, 1980). The presence of the slag and the seeded coal particles significantly influences the flow and heat transfer characteristics in the MHD channel. Ignoring the effect of the slag, and considering the MHD generator start-up condition, the problem reduces to unsteady two-phase flow in an MHD channel.

In general, there are two basic approaches to model two-phase fluid/particle flows. These are based on the Eulerian and Lagrangian descriptions known from fluid mechanics. The former treats both the fluid- and the particle-phases as interacting continua (see, for instance, Marble, 1970) while the latter treats only the fluid-phase as continuum with the particle-phase being governed by the kinetic theory (see Berlemont et al., 1990). The present work employs the continuum approach and uses a modified dusty-gas model to include particle-phase viscous stresses, finite particle volume fraction, and a hydromagnetic body force.

The particle-phase viscous stresses can be used to model particle-particle interaction. They can be thought of as a natural consequence of the averaging processes employed to model a discrete system of particles as a continuum (see, for instance, Drew and Segal, 1971; Drew, 1983). Previously published work which includes the particle-phase viscous stresses can be found in the papers by Gidaspow (1986), Tsuo and Gidaspow (1990), and Gadiraju et al. (1992). In the present work, both the fluid- and the particle-phases are assumed to be incompressible and have constant properties, and the particle-phase volume fraction is assumed to be constant and finite. In reality, the particle-phase volume fraction is non-
The single-phase flow of conducting fluids in pipes with a circular cross-section has been investigated by many authors (see, for instance, Shercliff, 1956; Gold, 1962). Tseng and Sahai (1977) reported solutions for unsteady dusty-gas flow in pipes, and the book by White (1991) contains a comprehensive review of the subject. However, the governing equations are non-linear and the time-dependent solutions are difficult to obtain. The purpose of this paper is to obtain closed-form transient solutions for the hydrodynamic and hydromagnetic two-phase particulate suspension flow in pipes. The approach taken here is to assume that the particle-phase is a dilute suspension and that the particle-phase density is much smaller than the fluid-phase density. This assumption is valid in many practical situations, such as particle-laden gas flows in pipes. The governing equations for this study are based on the conservation laws of mass, momentum, and energy for the fluid and particle phases. The equations are written in terms of dimensionless variables, and the solution is obtained numerically using a finite difference method. The results are presented in the form of dimensionless pressure, velocity, and temperature profiles for various particle loadings and magnetic field strengths. The effects of particle loading and magnetic field strength on the flow are discussed, and the results are compared with experimental data available in the literature. The method presented here provides a convenient way to obtain solutions for the governing equations of two-phase flow in pipes with a circular cross-section.
governing equations with \(j = 0 \) for plane channel flow and \(j = 1 \) for axisymmetric pipe flow can be written in dimensionless form as

\[
\frac{\partial F}{\partial \tau} = \frac{\partial^2 F}{\partial \eta^2} + \frac{\beta}{Pr} \frac{\partial F}{\partial \eta} + \kappa \zeta (F_p - F) - M^2 F + G(\tau),
\]
(1)

\[
\frac{\partial F_p}{\partial \tau} = \frac{\beta}{Pr} \frac{\partial^2 F_p}{\partial \eta^2} + \frac{\partial F_p}{\partial \eta} + \kappa \zeta (F - F_p),
\]
(2)

\[
\frac{\partial \theta}{\partial \tau} = \frac{1}{Pr} \left(\frac{\partial^2 \theta}{\partial \eta^2} + \frac{j}{Pr} \frac{\partial \theta}{\partial \eta} \right) + E \left(\frac{\partial F}{\partial \eta} \right)^2 + E \kappa \zeta (F_p - F)^2 + \frac{\kappa \zeta}{Pr} \left(\theta_p - \theta \right),
\]
(3)

\[
\frac{\partial \theta_p}{\partial \tau} = \frac{\beta E}{\gamma} \left(\frac{\partial F_p}{\partial \eta} \right)^2 - \frac{\kappa \zeta}{Pr} \left(\theta_p - \theta \right),
\]
(4)

where \(\beta = \mu_e / \mu, \quad \zeta = a^2 \rho / (\mu c_p), \quad M = \sqrt{\alpha} / \mu \), \(Pr = \mu c_p / k, \quad \gamma = c_p / c_e, \quad E = (G a d^2 / \mu c(T_1)), \quad a = a^2 \rho / (\mu c_p) \), are the viscosity ratio, momentum inverse Stokes number, the Hartmann number, the Prandtl number, the specific heat ratio, the Eckert number, and the temperature inverse Stokes number, respectively. It should be noted that in obtaining Eqs. (1)–(4) the following non-dimensionalization parameters are employed where the meaning of the parameters is given in the Notation:

\[
r = a n_1, \quad t = a^2 \rho r / \mu, \quad \rho_p = \kappa\rho(1 - \phi) / \phi,
\]

\[
\frac{\partial \theta}{\partial \zeta} = -G_0 \theta (\tau), \quad \frac{\partial}{\partial \zeta} \left(V(r, \tau) \right) = G_0 a d^2 \mu F(\eta, \tau),
\]

\[
V_p(r, \tau) = G_0 a d^2 \mu F_p(\eta, \tau), \quad T(r, \tau) = T_0(\eta, \tau), \quad T_p(r, \tau) = T_0\theta_p(\eta, \tau).
\]

Eqs. (1)–(4) are supplemented by the following dimensionless initial and boundary conditions:

\[
F(\eta, 0) = 0, \quad F_p(\eta, 0) = 0, \quad F(0, \tau) \neq \infty, \quad F_p(0, \tau) \neq \infty, \quad F(1, \tau) = 0, \quad F_p(1, \tau) = 0, \quad \theta(0, \eta) = 0, \quad \theta_p(0, \eta) = 0, \quad \theta(0, \tau) \neq \infty, \quad \theta_p(0, \tau) \neq \infty, \quad \theta(1, \tau) = 1.
\]

Of special interest in the present work is to observe the behaviors of the volumetric flow rates \(Q \) and \(Q_p \) for the fluid and the particle-phases, the fluid- and particle-phase friction coefficients \(C \) and \(C_p \) and the wall heat transfer \(q_w \) at the upper wall of the channel under various conditions. These physical parameters can, respectively, be defined taking into account the flow symmetry of the problem as follows:

\[
Q = 2 \int_0^1 (\tau^2 F(\eta, \tau) \, d\eta, \quad Q_p = 2 \int_0^1 (\tau^2 F_p(\eta, \tau) \, d\eta,
\]

\[
C = -\frac{\partial F}{\partial \eta} (1, \tau), \quad C_p = -\frac{\beta \zeta}{Pr} \frac{\partial F_p}{\partial \eta} (1, \tau),
\]

\[
q_w = -\frac{1}{Pr} \frac{\partial \theta}{\partial \eta} (0, \tau), \quad \delta = \begin{cases} 0, & \text{for plane flow,} \\ 1, & \text{for pipe flow.} \end{cases}
\]

3. Analytical results

Eqs. (1)–(4) and (6) represent an initial-value problem. Since the flow of the suspension is assumed incompressible with constant properties, the hydrodynamic problem is uncoupled from the thermal problem. In addition, the hydrodynamic problem consisting of Eqs. (1) and (2) is linear and can be solved by the method of expansion in orthogonal functions. However, the thermal problem is non-linear and must be solved numerically. Therefore, respectively closed-form and numerical solutions for the hydrodynamic and thermal problems will be reported in this paper. The hydrodynamic solution can be obtained by assuming that the solutions for \(F \) and \(F_p \) take on the forms

\[
j = 0: \quad F_0(\eta, \tau) = \sum_{n=1}^{\infty} H_n(\tau) \cos(\lambda_n \eta),
\]

\[
F_p(\eta, \tau) = \sum_{n=1}^{\infty} H_{pn}(\tau) \cos(\lambda_n \eta),
\]

\[
j = 1: \quad F(\eta, \tau) = \sum_{n=1}^{\infty} H_n(\tau) \beta_n(\lambda_n \eta),
\]

\[
F_p(\eta, \tau) = \sum_{n=1}^{\infty} H_{pn}(\tau) \beta_n(\lambda_n \eta),
\]

where \(\lambda_n \) are roots of the equation \(\cos(\lambda_n \eta) = 0 \) for channel flow and the equation \(\beta_n(\lambda_n \eta) = 0 \) (\(\beta_n \) being the zeroth-order Bessel function of the first kind) for pipe flow and \(H_n \) and \(H_{pn} \) are functions to be determined. Substituting Eqs. (8) and their derivatives into Eqs. (1) and (2) (with the non-homogeneous part of these equations represented by a series in \(\cos(\lambda_n \eta) \) for channel flow and \(\beta_n(\lambda_n \eta) \) for pipe flow), multiplying by \(\cos(\lambda_n \eta) \) for channel flow and by \(\beta_n(\lambda_n \eta) \) for pipe flow (to take advantage of the orthogonality property of Fourier cosine and Bessel functions), and then integrating with respect to \(\eta \) from 0 to 1 yield

\[
H_n + (\lambda_n^2 + \kappa \zeta + M^2) H_n - \kappa \zeta H_{pn} = b_n G(\tau),
\]

\[
H_p + \frac{\beta_n^2}{M^2} H_p + x H_{pn} - H_n = 0,
\]

where a dot denotes ordinary differentiation with respect to \(\tau \) and \(b_n = 2(1 + \kappa \zeta) / \lambda_n \) for channel flow and \(b_n = 2(1 + \kappa \zeta) / (\lambda_n J_1(\lambda_n)) \) (\(J_1 \) being the first-order Bessel function of the first kind) for pipe flow. Combining Eqs. (9) and (10) gives

\[
H_n + (\lambda_n^2 + 1 + \kappa \zeta + M^2) H_n + (\beta_n^2 + M^2 + \kappa \zeta) + x (\lambda_n^2 + M^2) H_n = b_n \left(G(\tau) + \left(\beta_n^2 + x \right) G(\tau) \right).
\]

It should be mentioned that analytical solutions for the case of constant pressure gradient along with their corresponding steady-state solutions were reported earlier by Chamkha (1995a) for channel flow. Therefore, the above equation will be solved only for oscillating and ramp pressure gradient conditions.

With the solutions of \(F \) and \(F_p \) (given by Eqs. (8)) known, the corresponding expressions for \(Q, \quad Q_p, \quad C \) and \(C_p \) can be written as

\[
Q = 2 \sum_{n=1}^{\infty} (-1)^{n+1} H_n / \lambda_n, \quad Q_p = 2 \sum_{n=1}^{\infty} (-1)^{n+1} H_{pn} / \lambda_n,
\]

\[
C = \sum_{n=1}^{\infty} (-1)^{n+1} \lambda_n H_n, \quad C_p = \beta_n \sum_{n=1}^{\infty} (-1)^{n+1} \lambda_n H_{pn}
\]

for plane flow and

\[
Q = 4 \pi \sum_{n=1}^{\infty} H_n / (b_n \lambda_n^2), \quad Q_p = 4 \pi \sum_{n=1}^{\infty} H_{pn} / (b_n \lambda_n^2),
\]

\[
C = 2 \sum_{n=1}^{\infty} H_n / b_n, \quad C_p = 2 \beta \sum_{n=1}^{\infty} H_{pn} / b_n
\]

for axisymmetric flow.
4. Oscillating pressure gradient solutions

Assuming that the pressure gradient $G(\tau)$ is a general sinusoidal function of the form

$$G(\tau) = G_s \sin(\omega \tau) + G_c \cos(\omega \tau),$$

where ω (a constant) is the circular frequency of oscillation, and G_s and G_c are constants and substituting into Eq. (11) results in

$$\hat{H}_n + \left(\hat{\beta}_{kn}^2 + 1 + \beta + x(1 + \kappa) + M^2\right)\hat{H}_n$$
$$+ \left(\hat{\beta}_{kn}^2 (M^2 + \hat{\beta}_{kn}^2 + \kappa x) + z(M^2 + \hat{\beta}_{kn}^2)\right)\hat{H}_n$$
$$= b_n (G_s (\hat{\beta}_{kn}^2 + z) - G_c \cos(\omega \tau))$$
$$+ (G_s (\hat{\beta}_{kn}^2 + z) + G_c \omega) \cos(\omega \tau).$$

The general solution to the above equation can be shown to be

$$H_n = c_3 \exp(s_1 \tau) + c_4 \exp(s_2 \tau) + c_5 \sin(\omega \tau)$$
$$+ c_6 \cos(\omega \tau),$$

where

$$s_1 = (X_1 Z_1 + Y_1 Z_1) / (X_1^2 + Y_1^2), \quad s_5 = (X_1 Z_2 + Y_1 Z_2) / (X_1^2 + Y_1^2),$$
$$X_1 = \hat{\beta}_{kn}^2 (M^2 + \hat{\beta}_{kn}^2 + \kappa x) + z(M^2 + \hat{\beta}_{kn}^2) - \omega^2,$$
$$Y_1 = (M^2 + \hat{\beta}_{kn}^2 (1 + \beta) + x(1 + \kappa)\omega,$$
$$Z_1 = b_n (G_s (\hat{\beta}_{kn}^2 + z) - G_c \omega), \quad Z_2 = b_n (G_s (\hat{\beta}_{kn}^2 + z) + G_c \omega).$$

Application of the initial conditions gives

$$c_4 = (c_5 s_1 - c_5 s_2 + b_n G_c) / (s_5 - s_1), \quad c_3 = -c_4 - c_6.$$

For this case the appropriate solution for H_{num} takes on the form

$$H_{\text{num}} = 1 / (\kappa x) c_1 (s_1^2 + \kappa x + M^2) \exp(s_1 \tau)$$
$$+ c_2 (s_2 + \kappa x + M^2) \exp(s_2 \tau)$$
$$+ (c_3 + c_4 (M^2 + \kappa x + M^2) + b_n G_s) \cos(\omega \tau)$$
$$+ (c_5 (M^2 + \kappa x - c_4 (M^2 - b_n G_s)) \sin(\omega \tau).$$

The above analytical solutions are consistent with the solutions for the special cases reported earlier by Ritter (1976) and Chamkhia (1995b).

5. Ramp pressure gradient solutions

For this special case, the pressure gradient $G(\tau)$ is assumed to take on the form

$$G(\tau) = \begin{cases} \tau / \tau_0, & \tau < \tau_0, \\ 1, & \tau \geq \tau_0. \end{cases}$$

In this case, it is needed to consider both ranges when $\tau < \tau_0$ and $\tau \geq \tau_0$. Similar to the previous case of oscillating pressure gradient, the expression for $G(\tau)$ in the different ranges is substituted into Eq. (11) and solved by subjecting to the initial conditions. It should be mentioned that the condition of continuity of solutions must be ensured at $\tau = \tau_0$. Without going into the details, it can be shown that the solutions for H_n and H_{num} for this case can be written as

$$H_n = \begin{cases} c_7 \exp(s_1 \tau) + c_8 \exp(s_2 \tau) + A_1 + B_1 \tau, & \tau < \tau_0, \\ R \exp(s_1 \tau) + S \exp(s_2 \tau) + Z, & \tau \geq \tau_0, \end{cases}$$

where

$$R = (b_n + \kappa x Y + s_2 Z - X (s_1 + M^2 + \kappa x + M^2)) / ((s_1 - s_2) \exp(s_1 \tau_0),$$
$$S = (b_n + \kappa x Y + s_1 Z - X (s_1 + M^2 + \kappa x + M^2)) / ((s_1 - s_2) \exp(s_2 \tau_0),$$
$$Z = b_n (\beta_{kn}^2 + z) / (\beta_{kn}^2 (M^2 + \kappa x + z (M^2 + \kappa x)),$$
$$X = c_7 \exp(s_1 \tau_0) + c_8 \exp(s_2 \tau_0) + A_1 + B_1 \tau_0,$$
$$Y = 1 / (\kappa x) (c_1 (s_1^2 + \kappa x + M^2) \exp(s_1 \tau_0)$$
$$+ c_2 (s_2 + \kappa x + M^2) \exp(s_2 \tau_0)$$
$$+ (c_3 + c_4 (M^2 + \kappa x + M^2) + b_n G_s) \cos(\omega \tau_0)$$
$$+ (c_5 (M^2 + \kappa x - c_4 (M^2 - b_n G_s)) \sin(\omega \tau_0).$$

Application of the initial conditions gives

$$c_4 = (c_5 s_1 - c_5 s_2 + b_n G_c) / (s_5 - s_1), \quad c_3 = -c_4 - c_6.$$

For this case the appropriate solution for H_{num} takes on the form

$$H_{\text{num}} = 1 / (\kappa x) c_1 (s_1^2 + \kappa x + M^2) \exp(s_1 \tau)$$
$$+ c_2 (s_2 + \kappa x + M^2) \exp(s_2 \tau)$$
$$+ (c_3 + c_4 (M^2 + \kappa x + M^2) + b_n G_s) \cos(\omega \tau)$$
$$+ (c_5 (M^2 + \kappa x - c_4 (M^2 - b_n G_s)) \sin(\omega \tau).$$

The above analytical solutions are consistent with the solutions for the special cases reported earlier by Ritter (1976) and Chamkhia (1995b).

6. Numerical results

The general physical effects of the various parameters on the solutions of the oscillating pressure gradient case are similar to those associated with the ramp pressure gradient case. For this reason, attention will be focused on the latter case. A representative set of hydrodynamic and thermal results is given below for both channel and pipe flows in the presence of combined particle-phase viscosity and magnetic effects. All subsequent results are obtained numerically using the finite-difference methodology. The method employed is implicit and iterative. Constant step sizes of 0.01 are used in the radial direction and variable step sizes in time with an initial time step of 0.01 and a growth factor of 1.02. These values are arrived at after much numerical experimentation was performed to assess grid independence. For example, when ΔN was set to 0.001, no significant changes in results were observed in which the error was only about 1%. In addition, when constant step sizes in τ were used, an average error of less than 2% was predicted. The solution convergence criterion was based on the difference between the current and the previous iterations and convergence was assumed to achieve when this difference reached 10^{-3}. The numerical flow solutions were checked against the analytical results given in Eqs. (20)–(28) and were found to be in excellent agreement. A representative comparison between the numerical and analytical results for Q, Q_p, C, and C_p is shown in Figs. 2–5. It should be mentioned that in the
numerical evaluation of the analytical solutions, 50 terms of the series were used.

Figs. 2–5 present typical time histories for the fluid-phase volume flow rate \(Q \), particle-phase volume flow rate \(Q_p \), fluid-phase skin-friction coefficient \(C \), and the particle-phase skin-friction coefficient \(C_p \) for both channel and pipe flow situations and various values of the Hartmann number \(M \) based on both the numerical and analytical solutions, respectively. Imposition of a magnetic field normal to the flow direction gives rise to a drag-like or resistive force in the direction of flow. This force is called the Lorentz force and it has the tendency to slow down or suppress the movement of the fluid in the channel or pipe, which in turn reduces the motion of the suspended particle-phase. This is translated into reductions in the average velocities of both the fluid- and the particle-phases and, consequently, in their flow rates. In addition, the reduced motion of the particulate suspension in the channel or pipe as a result of increasing the strength of the magnetic field causes lower velocity gradients at the wall. This has the direct effect of reducing the skin-friction coefficients of both phases. These and the previous behaviors are clearly evident in the decrease of \(Q \), \(Q_p \), \(C \), and \(C_p \) as \(M \) increases as shown in Fig. 2, 3, 4 and 5, respectively. Furthermore, it is also observed from these figures that, in general, lower values of \(Q \), \(Q_p \), \(C \), and \(C_p \) are predicted for the case of pipe flow than for the case of channel flow at the same conditions with the exception of \(Q \) for relatively large values of \(M \) (\(M > 3 \)). The excellent agreement between the numerical and analytical solutions for all of the conditions considered is also apparent in these figures.

The effects of the particle loading parameter \(\kappa \) on transient channel and pipe flow and heat transfer results for \(Q, Q_p, C, C_p \), and \(q_w \) were obtained but not presented herein for brevity. Similar to the magnetic field effect, increases in the particle loading or particle concentration in the channel or pipe cause the movement of the fluid and the particles to be slower which results in reductions in \(Q, Q_p, C, C_p \) and \(q_w \) since it is directly proportional to \(\kappa \) (see definition of \(C_p \)). These behaviors were consistent with the obtained results. Also, the effect of increasing \(\kappa \) was found to decrease the steady-state profiles of the fluid-phase temperature \(\theta \) and the particle-phase temperature \(\theta_p \). This decrease in temperature is due to the decrease in the velocity distribution caused by increase in the particle loading. However, the wall gradients of the fluid temperature profiles was predicted to increase as \(\kappa \) increased for all times. This caused the wall heat transfer \(q_w \) to increase as \(\kappa \) was increased for all times.

Figs. 6 and 7 display the variations in the values of \(C \) and \(C_p \) that are brought about by changes in the viscosity ratio \(\beta \) as the flow time progresses from non-steady to steady-state conditions, respectively. Endowing the particle-phase with an artificial viscosity has been shown to be especially valid for dense suspensions (see, Gidaspow, 1986; Tsuo and Gidaspow, 1990).
In these situations, as the particle-phase viscosity coefficient μ_p increases (that is, β increases), the suspension becomes more viscous and will be moving with an effective viscosity $\mu + \mu_p$. This will represent the case of high particle concentration. Therefore, as β increases, the flow rates of both phases as well as the fluid-phase wall friction decreases considerably. However, since C_p is defined as directly proportional to β, it increases as β increases at all times. These facts are evident from Figs. 6 and 7. Also, the wall heat transfer is observed to be unaffected by changes in β. In addition, it is noted that the changes in the flow characteristics of both phases for $\beta > 1$ are not as great as for $0 \leq \beta \leq 1$. Again, the flow and heat transfer characteristics for pipe flow are lower than those associated with channel flow at the same conditions.

It is also observed from other results not presented herein that increasing the Eckert number produces significantly higher steady-state temperature distributions for both the fluid- and the particle-phases. Also, increasing the fluid Prandtl number Pr causes the steady-state temperature profiles θ and θ_p as well as the wall heat transfer q_w to decrease. In addition, contrary to the cases discussed before, the pipe flow results for θ and θ_p are found to be higher than those corresponding to channel flow at the same conditions.

The effects of the temperature inverse Stokes number ε on the temperature profiles θ and θ_p and the transient distribution of q_w are presented in Fig. 8, 9 and 10, respectively. Increases in the values of ε increase the thermal coupling or energy transfer between the fluid- and the particle-phases. This causes the fluid-phase temperature to decrease and the particle-phase temperature to increase as clearly shown in
Figs. 8 and 9, respectively. The particle-phase wall temperature is not prescribed since the particle-phase energy equation is a first-order differential equation and, therefore, it is adjusted through the thermal coupling process. The wall heat transfer \(q_w \) is dependent on the slope of the fluid-phase temperature at the wall which increases as \(\varepsilon \) increases. This results in increasing the wall heat transfer as shown in Fig. 10.

7. Conclusion

In this paper, the transient flow and heat transfer of a particulate suspension in an electrically conducting fluid in a channel and a circular pipe with an applied transverse magnetic field was studied for the cases of both oscillating and ramp pressure gradients. The governing equations for this investigation were derived, non-dimensionalized, and solved analytically and numerically. The analytical solutions were obtained for the hydrodynamic or flow problem while the thermal problem was solved numerically using an implicit finite-difference method. Numerical evaluations of the exact solutions were performed and successfully compared with the fully numerical solutions. Graphical results for the fluid-phase volumetric flow rate, the particle-phase volumetric flow rate, the fluid-phase skin-friction coefficient, and the particle-phase skin-friction coefficient are presented and discussed to show the effects of the Hartmann magnetic number, the particle loading, and the viscosity ratio on the solutions. In addition, finite-difference solutions of the energy equations of both phases were performed and graphical results were presented to show the influence of the temperature inverse Stokes number on the temperature profiles of both phases and the wall heat transfer. While favorable comparisons with previously published theoretical work on this problem are performed, no experimental data were found to check the validity of the assumptions made. It is hoped that the results reported herein will serve as a check for further theoretical modeling and a stimulus for experimental work on this problem.

Acknowledgements

The author acknowledges and is grateful for the financial support of the Research Administration at Kuwait University through the Research Project EPM-082.

References