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The problem of transient hydromagnetic non-Darcy free
convection from a fluid saturated porous medium supported by
two infinitely long porous vertical plates is considered. One of
the plates is suddenly heated while the other is maintained at
the initial temperature. Fluid suction and injection are imposed
at the heated wall and the other wall, respectively. The
mathematical model accounts for non-Darcy inertial effects of
the porous medium and for the Hartmann effects of
Magnetohydrodynamics. ~ Several closed-form and limiting
solutions are obtained under steady-state conditions. In
addition, the energy equation which is independent of the flow
equations is solved analytically by the separation of variables
method. The full initial-value problem is solved numerically by
an implicit, tri-diagonal, finite-difference methodology. The
obtained results are illustrated graphically to show special
| features of the solutions.

Fluid/Particle Separation Journal, 12, 155-160, (1999)

KEY WORDS

Free convection, porous media, non-Darcy flow,

hydromagnetic flow, unsteady flow

NOMENCLATURE_

By magnetic induction

G inertia coefficient for porous medium

Cf skin friction coefficient at heated wall
Da Darcy number, K / (eH?)

F dimensionless fluid vertical velocity

g gravitational acceleration

Gr Grashof's number, CK *'2p2gBAT / u?
H channel width

K permeability of porous medium
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M Hartmann number, B, H (ec / p)'"?

Nu Nusselt number

Pr Prandt] number, p / (pot ,)

K dimensionless suction or injection velocity,
uv, /(epgBH?AT)

R, wall Reynold's number, p ¥ H / (eu )

¥ time

T dimensional fluid temperature

L unheated wall temperature

u dimensional vertical velocity

v dimensional horizontal velocity

Vo suction or injection velocity

x.y Cartesian coordinates as shown on figure 1

GREEK SYMBOLS

ey

effective thermal diffusivity

coefficient of thermal expansion

temperature increase
porosity of porous medium

~

dimensionless horizontal distance
fluid dynamic viscosity

fluid density

fluid electrical conductivity
dimensionless time

©PAQ O FEFIOND ™R

dimensionless fluid temperature

INTRODUCTION

Extensive research has been carried out concerning
natural convection flows and the resulting heat transfer
phenomenon occurring by virtue of temperature difference
between surfaces and the ambient medium temperature (see,
for instance, Goldstein and Brigg, 1984 and Seigal, 1958).
In the past decade, there has been increasingly considerable
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interest in investigating free or natural convection flows in
porous media. This interest stems from various industrial
applications such as thermal insulation systems, enhanced oil
recovery, regenerative heat exchangers, petroleum Teservoirs,
and filtration. This type of work has been employing the
classical Darcy flow model which is applicable for slow flows
and a modified Darcy model (sometimes named non-Darcy
flow model) which accounts for inertial porous medium effects
(not present in the Darcy model) arising from fast flows (when
the pressure differential across the porous medium is a
quadratic function of the instantaneous velocity) (see, for
example, Chen and Lin, 1995, Singh and Tewari, 1993, Chen
et al., 1989, Nakayama et al., 1990, and Lai, 1991a, 1991b).
Along these lines of research, there has beena renewed interest
in studying the magnetohydrodynamic effects on free
convection flows in porous media (see, for instance, Kumari et
al., 1992, Gorla et al., 1993, and Pop and Watanabe, 1994).

The transient phenomena of such flows have also been the
subject of many investigators. For example, Ingham et al.,
1986 and Ingham and Brown, 1986, reported series expansion
solutions for the problem of transient free convection on a
suddenly cooled and suddenly heated vertical plate in a porous
medium, respectively. Jang and Ni, 1989, attacked the same
problem with mass transfer for isothermal wall using the finite-
difference methodology. Recently, Chen et al., 1989, and
Nakayama et al., 1990, considered similar flat plate problems
with non-Darcy inertial effects (as discussed by Vafai and Tien,
1981). More recently, the most fundamental problem of
transient non-Darcy free convection between vertical
impermeable plates in a fluid saturated porous medium with
suddenly heated and suddenly cooled walls was treated by
Nakayama et al., 1993.  They reported closed-form
approximate solutions for small and large times as well as
numerical solutions for the intermediate times.

It is of interest in this paper to consider the problem
discussed by Nakayama et al., 1993 (with only one of the walls
subjected to sudden change in temperature) to study the effects
of suction and injection at the walls as well as the influence of
the presence of a magnetic field force normal to the direction
of motion (as done by Takhar and Ram, 1994, and Sachati and
Chandran, 1994, for vertical plates) on the flow and heat
wransfer characteristics of the problem. It is assumed that the
fluid is incompressible and electrically conducting. In addition,
the magnetic Reynolds number is assumed small so that the
induced magnetic field is neglected.

PROBLEM FORMULATION

Consider transient hydromagnetic buoyancy induced flow
and heat transfer through a vertical fluid saturated porous
medium channel of infinite extent and having a width of H as
shown in figure 1. Initially, both the channel walls as well as
the porous medium are kept at the same temperature T,. One
of the channel walls is then suddenly heated by a temperature
increase AT while the temperature of the other wall is kept
unchanged. Uniform fluid suction and injection are imposed at
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the left-side and right-side channel walls, respectively. Due
to the sudden heating of the left-side channel surface, a fluid
vertical motion is induced due to density gradients causing
a buoyancy force. As the flow is induced, a magnetic field
of uniform strength B, is applied normal to the flow
direction. Let the x-axis be directed upwards along the
channel walls and the y-axis be normal to it as shown in
figure 1. The porous medium is assumed to have uniform
porosity and permeability. The governing equations for this
investigation are based on the usual balance laws of mass,
linear momentum, and energy modified to account for the
porous medium effects, magnetic field effects, and the
buoyancy effects. These laws (with the Buossineq and non-
Darcy approximations and neglecting the Hall effects of
magnetohydrodynamics) can be written as (see, Vafai and
Tien, 1981, Nakayama et al., 1993, and Chen and Lin,
1995).

v _y

oy m
du p; c
pou o B b, PO TTE
o 2 kK K @

2
-oByu+ pgh(T - Ty)

aT  oT o'T
CIMCERTS @

where 1 is time and y is the distance normal to the flow
direction. u, v, and T are the x-component of the Darcian
velocity, y-component of the Darcian velocity, and the local
fluid temperature, respectively. P and p are the fluid
density and dynamic viscosity, respectively. K, ¢, C, and
«, are the porous medium permeability, porosity, inertial
coefficient, and effective thermal diffusivity, respectively.
g and P are the gravitational acceleration and thermal
expansion coefficient while o and B, are the fluid electrical
conductivity and magnetic induction, respectively. It should
be noted that the ratio of heat capacity of the porous medium
to that of the fluid is taken to be unity and the viscous and
magnetic dissipations are neglected from the energy equation
as frequently done.

The initial and boundary conditions suggested by the
physics of the problem are

u(0,y)=0, T(0,y)=To (4a, b)

u(t,0) =0, v(t,0)=-V,, T(.0)= T, + AT (5a-D)
u(t,Hy=0,v(t,H)=~V,, T(t,H)= Ty
where V, is the wall suction (or injection) velocity, and AT
is the temperature increase on the heated wall.

Equation (1) subject to either Equations (5b) or (5¢) has
the following solution
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