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Abstract In this study, the mathematical modeling for boundary layer flow and heat transfer
past an inclined stationary/moving flat plate with a convective boundary condition is consid-
ered. Using a similarity transformation, the governing equations of the problem are reduced
to a coupled third-order nonlinear ordinary differential equations and are solved numerically
using the shooting method. The obtained numerical solutions are compared with the avail-
able results in the literature and are found to be in excellent agreement. The features of the
flow and heat transfer characteristics for various values of the angle of inclination, Prandtl
number, local Grashof number and the Biot number are analyzed and discussed. It is found
that the temperature of the stationary flat plate is higher than the temperature of the moving
flat plate.

Keywords Boundary layer flow · Inclined plate · Grashof number · Convective boundary
condition · Numerical solution
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1 Introduction

Investigations of laminar boundary layer flow about a flat plate in a uniform stream of
fluid continues to receive considerable attention because of its importance in many practical
applications in a broad spectrum of engineering systems such as geothermal reservoirs,
cooling of nuclear reactors, thermal insulation, combustion chamber, rocket engine, etc.
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Blasius [1] was the first to investigate and presented a theoretical result for the boundary
layer flow over a flat plate in a uniform stream. The behavior of boundary layer flow due to
a moving flat surface immersed in an otherwise quiescent fluid was first studied by Sakiadis
[2], who investigated it theoretically by both exact and approximate methods. Bataller [3]
studied the effects of thermal radiation on the laminar boundary layer about a flat plate via
fourth-order Runge-Kutta algorithm together with shooting method. Apart from these works,
various aspects of flow and heat transfer of viscous fluid over a flat plate were investigated
by many researchers (see [4–8]).

When modeling the boundary layer flow and heat transfer about a flat plate, the boundary
conditions that are usually applied are either a specified surface temperature or a specified
surface heat flux. However, there are boundary layer flow and heat transfer problems in which
the surface heat transfer depends on the surface temperature. This situation arises in conjugate
heat transfer problems and when there is Newtonian heating of the convective fluid from the
surface. Newtonian heating occurs in many important engineering devices, for example,
in heat exchangers, where the conduction in a solid tube wall is greatly influenced by the
convection in the fluid flowing over it. On the basis of above discussions and applications,
Bataller [9] analyzed the effects of thermal radiation on the laminar boundary layer about a
flat plate in a uniform stream of fluid, and about a moving plate in a quiescent ambient fluid
both under a convective surface boundary condition. Later, Aziz [10] investigated the heat
transfer problems for boundary layer flow concerning with a convective boundary condition.
Ishak et al. [11] studied the steady laminar boundary layer flow over a moving plate in a
moving fluid with convective surface boundary condition and in the presence of thermal
radiation. In this problem they combine two problems i.e., Blasius flow and Sakiadis flow
using the composite velocity (U = Uw + U∞) which was introduced by Afzal et al. [12].
Makinde [13,14] studied the hydromagnetic flow over a vertical flat plate with a convective
boundary condition, in this analysis he studied both heat and mass transfer analysis. Further,
they extended their work and investigate the MHD mixed convection flow of a vertical plate
embedded in a porous medium with a convective boundary condition. Recently, Ramesh
et al. [15] obtained a numerical solution for MHD mixed convection flow of a viscoelastic
fluid over an inclined surface with a non-uniform heat source/sink. Rajesh and Chamkha
[16] studied the effects of ramped wall temperature on unsteady two-dimensional flow past a
vertical plate with thermal radiation and chemical reaction. Chamkha et al. [17] investigated
the coupled heat and mass transfer by MHD free convection flow along a vertical plate with
stream-wise temperature and species concentration variations.

The aim of this paper is to extend the work by Ishak et al. [11] in the absence of radiation
effect and by considering the angle of inclination. Appropriate similarity transformations
reduce the governing partial differential equations into a set of nonlinear ordinary differen-
tial equations. The resulting equations are solved numerically using the shooting method.
Variations of several pertinent emerging parameters are analyzed in detail. To the authors’
knowledge, no previous attempts have been made to analyze this problem.

2 Problem formulation

We consider a steady two-dimensional flow of a stream of cold incompressible fluid about a
vertical plate which is inclined with an acute angle α, and the temperature T∞ over the upper
surface of the flat plate with a constant free stream velocity U∞ and moving flat plate with
constant velocityUw , while the lower surface of the plate is heated by convection from a hot
fluid at temperature T f which provides a heat transfer coefficient h f . Further, it is assumed
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that the viscous dissipation and radiation effects are neglected. The velocity and temperature
profiles in the fluid flow must obey the usual boundary layer equations are given by Ishak et
al. [11]

∂ u
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∂ y
= 0, (1)
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where u and v are the velocity components of the fluid along x and y directions respectively.
μ, ρ and cpare the co-efficient of viscosity of the fluid, density of the fluid, and specific
heat of fluid, respectively. g is the acceleration due to gravity, β is the volumetric coefficient
of thermal expansion, T is the temperature of the fluid, k is the thermal conductivity.

The appropriate boundary conditions for the flow problem are given by [11]

u = Uw, v = 0, −k
∂T

∂y
= h f (T f − T ) at y = 0

u → U∞, T → T∞, as y → ∞. (4)

where T f is the hot fluid temperature and h f is the heat transfer coefficient.
In order to reduce the number of independent variables and to get the dimensionless

equations, we define the new variables as,

ψ = √
Uxν f (η), η =

√
U

ν x
y, θ(η) = T − T∞

T f − T∞
, (5)

and the stream function is defined by

u = ∂ψ

∂y
and v = −∂ψ

∂x
, (6)

with the above transformations, the equation of continuity (1) is identically satisfied and Eqs.
(2) and (3) reduce to the following forms as:

2 f ′′′ + f f ′′ + 2Gr θ cosα = 0, (7)

2θ ′′ + Pr f θ ′ = 0 (8)

where a prime denotes differentiation with respect to η and Gr = gβ(T f −T∞)x
U2 is the local

Grashof number (Kierkus [18]), Pr = ν/α is the Prandtl number. From Eq. (7) we note that,
when α = 90◦, our problem reduces to the horizontal flat plate case, while when α = 0◦,
it reduces to the vertical flat plate. To exit Eqs. (1–4), here we take h f = c√

x
, where c is a

constant.
The boundary conditions defined as in (4) will become,

f = 0, f ′ = λ, θ ′ = −Bi(1 − θ) at η = 0,

f ′ → 1 − λ, θ → 0 as η → ∞. (9)

where Bi = c
k

√
ν
U is the Biot number and λ = Uw

U is the velocity ratio parameter. Here, one

can observe that when λ = 0, the problem reduces to the Blasius flow (stationary flat plate)
and when λ = 1, the problem reduces to the Sakiadis flow (moving flat plate), respectively.
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Table 1 Comparison results of θ(0) for different values of Biot number (Bi) when Pr = 0.72, Gr = 0.5
and λ = 0 (stationary flat plate)

Bi Bataller [9] Aziz [10] Ishak et al. [11] Present result

α = 90◦ α = 30◦ α = 0◦

0.05 0.1446 0.1447 0.1446 0.1446 0.1394 0.1388

0.1 – 0.2528 0.2527 0.2527 0.2401 0.2386

0.2 0.4035 0.4035 0.4035 0.4035 0.3800 0.3774

0.4 – 0.5750 0.5750 0.5750 0.5431 0.5398

0.6 0.6699 0.6699 0.6699 0.6699 0.6371 0.6337

0.8 – 0.7302 0.7301 0.7301 0.6986 0.6954

1.0 0.7718 0.7718 0.7718 0.7718 0.7422 0.7392

5.0 – 0.9441 0.9441 0.9441 0.9334 0.9323

10 0.9712 0.9713 0.9712 0.9712 0.9654 0.9648

Table 2 Computations values of θ(0) for different values of Biot number (Bi) when Pr = 0.72, Gr = 0.5
and λ = 1 (moving flat plate)

Bi θ(0)

α = 90◦ α = 30◦ α = 0◦

0.05 0.1227 0.1194 0.1190

0.1 0.2185 0.2102 0.2092

0.2 0.3587 0.3420 0.3402

0.4 0.5280 0.5035 0.5010

0.6 0.6266 0.6003 0.5976

0.8 0.6911 0.6651 0.6625

1.0 0.7366 0.7117 0.7092

5.0 0.9332 0.9234 0.9224

10 0.9654 0.9600 0.9595

3 Results and discussion

The nonlinear coupled differential Eqs. (7) and (8) along with the boundary conditions (9)
are solved numerically using Runge-Kutta method along with the shooting technique. The
accuracy of the employed numerical method is tested by direct comparisons with the values
of θ(0) (at λ = 0) with those reported by [9–11] in Table 1, for the special case of the
present problem and an excellent agreement between the results is found. Also, it provides a
sample of our results for θ(0) when the direction of free stream is fixed (i.e., λ = 1) which
is presented in Table 2. The numerical computations are executed for several values of the
dimensionless parameters involved in the equations viz. the angle of inclination (α), Prandtl
number (Pr), local Grashof number (Gr) and the Biot number (Bi). Some figures are plotted
to illustrate the computed results and also to give the physical explanations.

The variations of the dimensionless velocity and temperature profiles for different values
of the angles of inclination (α = 0◦, 30◦, 90◦) are presented in Figs. 1 and 2, respectively.
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Fig. 1 Effect of α on velocity profiles

Fig. 2 Effect of α on temperature profiles

For λ = 0, it is observed that boundary layer flow for the velocity decreases with the increase
of the angle of inclination. This is due to the fact that as the angle of inclination increases, the
effect of the buoyancy force due to thermal variations decreases by a factor of cosα. Also,
we notice that the effect of the buoyancy force (which is maximum for α = 0) overshoots the
main stream velocity significantly. At λ = 1, the similar effect can be found as shown in Fig.
1. Further, we observe that the temperature increases as the angle of inclination increases as
shown in Fig. 2. One can note that if α = 90◦, the problem reduces to the horizontal flat plate
(at λ = 0) and the horizontal moving flat plate (at λ = 1), while when α = 0◦ the problem
reduces to the vertical flat plate (at λ = 0) and the vertical moving flat plate (at λ = 1) and
when α = 30◦, the problem reduces to the inclined flat plate (at λ = 0) and the inclined
moving flat plate (at λ = 1).

Figure 3 depicts the variation in the velocity profiles for different values of the Grashof
number. It is found that for a fixed value of α(α = 30◦), both the stationary flat plate (λ = 0)
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Fig. 3 Effect of Gr on velocity profiles

Fig. 4 Effect of Gr on temperature profiles

and the moving flat plate (λ = 1), the velocity increases with the increase in the Grashof
number. The physical interpretation gives that if Gr > 0, it means heating of the fluid or
cooling of the boundary surface, and if Gr < 0, it means cooling of the fluid or heating of
the boundary surface, and Gr = 0, corresponds to the absence of free convection current.
The graph of the temperature profiles for different values of the Grashof number is plotted
in Fig. 4. It is observed from this figure that the temperature in the thermal boundary layer
decreases with the increase in the Grashof number. This result shows the thinning of the
thermal boundary layer. This is due to the fact that the buoyancy force enhances the fluid
velocity and increases the boundary layer thickness with the increase in the value of Gr .

Figure 5 illustrates the influence of the Prandtl number on the temperature profiles in the
boundary layer for both a stationary flat plate (λ = 0) and a moving flat plate (λ = 1).
As in the theory of boundary layer flow, the numerical results show that an increase in the
Prandtl number results in a decrease of the thermal boundary layer thickness and in general,
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Fig. 5 Effect of Pr on temperature profiles

Fig. 6 Effect of Bi on temperature profiles

lower average temperature within the boundary layer. The reason is that smaller values of
Pr are equivalent to increasing the thermal conductivity of the fluid, and therefore, heat is
able to diffuse away from the heat surface more rapidly than for higher values of Pr. In heat
transfer problems, the Prandtl number controls the relative thickening of the momentum and
the thermal boundary layers. In Fig. 6, the variation of the temperature profiles for various
values of the Biot number is presented. It is observed that the temperature field increases
rapidly near the boundary by increasing the Biot number. Physically speaking, the Biot
number is expressed as the convection at the surface of the body to the conduction within
the surface of the body. When the thermal gradient are applied to the surface, then the ratio
governing the temperature inside a body varies significantly, while the body heats or cools
over time.

From Table 3, we can seen that the values of θ ′(0) are negative, which means that the heat
flows from the fluid to the solid surface. This is not surprising since the fluid is hotter than
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Table 3 Computations values of
−θ ′(0) for different values of
Biot number (Bi)with
Pr = 0.72, Gr = 0.5 and
α = 30◦

Bi −θ ′(0)
λ = 0 λ = 1

0.1 0.0759 0.0789

0.5 0.2021 0.2213

2.0 0.2997 0.3405

5.0 0.3328 0.3828

10 0.3456 0.3994

50 0.3567 0.4139

100 0.3581 0.4158

500 0.3593 0.4173

1000 0.3594 0.4175

5000 0.3595 0.4177

10000 0.3595 0.4177

100000 0.3595 0.4177

1000000 0.3595 0.4177

5000000 0.3595 0.4177

the solid surface. Also, one can observe that when the value of Bi increases from 0.1 to 50,
the temperature gradient −θ ′(0) increases significantly. However, a further increase in Bi
has only a minor effect on the −θ ′(0), when Bi → ∞ (i.e., for large value),

4 Conclusions

In the present investigation, the mathematical modeling for boundary layer flow and heat
transfer past an inclined stationary/moving flat plate with a convective boundary condition
is considered. Using similarity transformations, the governing equations of the problem are
reduced to a coupled third-order nonlinear ordinary differential equations and are solved
numerically using the shooting method. The obtained numerical solutions are compared
with previously published results and are found to be in excellent agreement. The influence
of the different parameters on the velocity profiles and temperature profiles are illustrated
and discussed. The numerical results give a view towards understanding the response char-
acteristics of the angle of inclination. It is found that when the effect of increasing the angle
of inclination in is to decrease the velocity and increase the temperature. The new result of
the present investigation is that the temperature of the stationary flat plate is higher than the
temperature of the moving flat plate when the plate is inclined at angle 30◦(α).
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