Squeeze film behavior in porous transversely circular stepped plates with a couple stress fluid
Santhana Krishnan Narayanan A Chamkha Sundarammal Kesavan

Article information:
To cite this document:
Permanent link to this document:
http://dx.doi.org/10.1108/EC-12-2014-0260

Users who downloaded this article also downloaded:

About Emerald www.emeraldinsight.com
Emerald is a global publisher linking research and practice to the benefit of society. The company manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as well as providing an extensive range of online products and additional customer resources and services.
Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for digital archive preservation.

*Related content and download information correct at time of download.
Squeeze film behavior in porous transversely circular stepped plates with a couple stress fluid

Santhana Krishnan Narayanan
Department of Mathematics, SRM University, Kattankulathur, India
A. Chamkha
Department Mechanical Engineering, Prince Mohammad Bin Fahd University, Al-Khobar, Saudi Arabia, and
Sundarammal Kesavan
Department of Mathematics, SRM University, Kattankulathur, India

Abstract
Purpose – The purpose of this paper is to carry out a study of the effect of surface roughness on squeeze film behavior between two transversely circular stepped plates with couple stress lubricant when the upper circular stepped plate has porous facing which approaches the lower plate with uniform velocity.

Design/methodology/approach – The modified Stochastic Reynolds equation is derived for Christensen Stochastic theory for the rough surfaces. Closed form solution of the Stochastic Reynolds equation is obtained in terms of Fourier-Bessel series.

Findings – It is found that the effect of couple stress fluid and surface roughness is more pronounced compared to classical case.

Originality/value – The problem is original that it consider a couple stress fluid in this type of applications.

Keywords Circular stepped plates, Couple stress fluid, Fourier-Bessel series, Squeeze film, Stochastic Reynolds equation, Christensen Stochastic theory

Paper type Research paper

Nomenclature

\(a \) outer radius of the plate
\(E \) expectancy operator
\(f \) probability density function
\(h_0 \) initial film thickness
\(h_1 \) maximum film thickness
\(h_2 \) minimum film thickness
\(\eta_s \) stepheight \((= h_s/h_0)\)
\(H^* \) film thickness of the porous layer
\(J_0 \) Bessel function of first kind of 0th order
\(l \) couple stress parameter
\(p \) pressure in the film region
\(p^* \) pressure in the porous region
\(p_1 \) fluid film pressure in the region \(0 \leq r \leq KR\)
\(p_2 \) fluid film pressure in the region \(KR \leq r \leq R\)
\(Q \) volume flow rate
\(R \) radius of the circular plate
\(t \) time of approach
\(t^* \) non-dimensional squeeze film time
\(u, w \) velocity components in \(r \) and \(z \)-directions, respectively
\(W \) load carrying capacity
\(W^* \) non-dimensional load carrying capacity

Received 7 January 2015
Revised 9 May 2015
30 May 2015
Accepted 10 June 2015
1. Introduction

The squeeze film lubrication phenomenon is observed in several applications such as automotive engines, machine tools and rolling elements. The squeeze film phenomenon arises when the two lubricating surfaces move toward each other in the normal direction and generates a positive pressure and hence supports a load. This is due to the fact that a viscous lubricant present between the two surfaces cannot be instantaneously squeezed out when the two surfaces move toward each other and this action provides a cushioning effect in bearings. Self-lubricating porous bearings are widely used in industry due to their self-contained oil reservoir in addition to their low cost and other aspects concerned with lubrication mechanism. Porous bearings are extensively used in brakes, clutches, etc. due to their self-contained oil reservoir and favorable low friction characteristics. An analysis of the squeeze film between porous rectangular plates is studied by Wu (1961) and gives very useful predictions in respect of porous bearings. The squeeze film lubrication between two infinitely long parallel plates is studied by Cameron (1981).

It is well known in the tribology literature that the bearing surfaces develop roughness after having some run-in and wear. The chemical degradation of lubricants leading to the contamination of lubricants is also one of the plausible reasons for developing the roughness on bearing surfaces in some cases. Since the surface roughness distribution is random in nature, a stochastic approach to model the surface roughness mathematically has to be adopted. Many researchers modeled the roughness by a Fourier series type approximation and employed a saw-tooth curve to mathematically model the surface roughness. Mitchell (1950) described surface roughness by a high-frequency sine curve. Christensen (1969) developed a stochastic model for the study of rough surfaces in hydrodynamic lubrication of solid bearings. Prakash and Tiwari (1982) used the Christensen Stochastic theory to study the effect of surface roughness on the characteristics of porous bearings.

All the investigations mentioned above are confined to the study of surface roughness on porous bearings with Newtonian fluid as lubricant. The use of different liquids as lubricant under different circumstances has gained importance with the development of modern technology machines. It is observed fact that the fluids containing additives or contaminants enhance the lubrication process. These additives have a desirable effect of enhancement of viscosity and a consequent rise in load capacity. Usually, these additives are in the form of long chain organic compounds. In most of these lubricating oils the additives of high molecular weight polymers are present as a kind of viscosity index improvers. The base oils with high viscosity index exhibit improved response to additives of various chemical composition which upgrade their quality and results in reduced additives consumption in the production of additive blended oils. Hence nowadays, the trend has been toward increasing of the viscosity index to manifolds.
Kragelsky and Alisin (1981) have given important advantages of the base oils of high
viscosity index are highly reliable components of machine parts within a wide range of
working temperature, a longer life and a good response to additives, etc. Hence, with the
development of modern industry, the importance of non-Newtonian fluids as lubricant has
been emphasized as Newtonian constitutive approximation is not a satisfactory
engineering approach for most of the lubrication problems. Therefore, the effect of
non-Newtonian property of lubricant must be taken into account in the realistic study
of these bearings. The common lubricants exhibiting non-Newtonian behavior are polymer-
thickened oils, greases and natural lubricating fluids, which appear in animal joints.

Stokes (1966) theory of couple stress fluids is the simplest generalization of classical
theory of fluids which account for polar effects such as the presence of
anti-symmetrical stresses, couple stresses and body couples. Many investigators have
used this theory to analyze the lubrication characteristics of various bearing systems.
An investigation on squeeze films between rough anisotropic porous rectangular plates
is done by Bujurke and Naduvinamani (1998). Ramanaiah (1979) investigated squeeze
films between finite plates lubricated by fluids with couple stresses. Naduvinamani and
Siddangouda (2009) have investigated squeeze film lubrication between circular stepped
plates of couple stress fluids. Bujurke et al. (2008) have investigated surface roughness
effects on squeeze film behavior in porous circular disks with couple stress fluids.
Squeeze films and thrust bearing lubricated by fluids with couple stress is investigated
by Ramanaiah and Sarkar (1978). Sundarammal et al. (2014) have investigated
magnetohydrodynamic squeeze film characteristics between finite porous parallel
rectangular plates with surface roughness effect. Effect of bearing deformation on the
characteristics of a slider bearing, (Ramanaiah and Sundarammal, 1982a) circular and
rectangular plates is studied by Ramanaiah and Sundarammal (1982b). The purpose of
this study is to investigate the performance of squeeze film behavior in porous circular
stepped disks using couple stress fluid and surfaces with roughness.

2. Mathematical formulation of the problem
The schematic diagram of squeeze film geometry of the problem considered is shown in
Figure 1. The squeeze film characteristics between the circular stepped plates are
analyzed when one circular stepped plate has a porous facing which approaches the
other rough plate with uniform velocity. The lubrication in the film region is assumed
to be a Stokes couple stress fluid. It is also assumed that, the body forces and body
couples are absent. The bearing surfaces are assumed to be transversely rough.

Figure 1.
Configuration of the Squeeze film bearing system
Under the usual assumption of hydrodynamic lubrication, applicable to thin films, the equations of motion for couple stress fluid takes the forms:

\[
\frac{\partial p}{\partial r} = \mu \frac{\partial^2 u}{\partial z^2} - \eta \frac{\partial^4 u}{\partial z^4} \tag{1}
\]
\[
\frac{\partial p}{\partial z} = 0 \tag{2}
\]
\[
\frac{1}{r} \frac{\partial (ru)}{\partial r} + \frac{\partial w}{\partial z} = 0 \tag{3}
\]

where \(u\) and \(w\) are the velocity components in \(r\) and \(z\) directions, respectively, \(p\) is the pressure, \(\mu\) is the Newtonian viscosity, \(\eta\) is the new material constant characterizing the couple stress and is of dimension of momentum. The ratio \(\frac{\eta}{\mu}\) has the dimension of length squared and hence characterizes the material length of the fluid. The film thickness of the lubricant film geometry is:

\[
H = h(t) + h_s(r, \theta, \xi) \tag{4}
\]

where \(h\) denotes the nominal smooth part of the film geometry, while \(h_s\) is the part due to the surface asperities measured from the nominal level and is regarded as a randomly varying quantity of zero mean, \(r\) and \(\theta\) are the radial and angular coordinates and \(\xi\) is the index parameter determining a definite roughness arrangement.

The relevant boundary conditions for the velocity components are:

\[
u = 0, \quad w = 0, \quad \frac{\partial^2 u}{\partial z^2} = 0 \text{ at the lower surface } z = 0 \tag{5}
\]

\[
u = 0, \quad w = w^* + \frac{dH}{dt}, \quad \frac{\partial^2 u}{\partial z^2} = 0 \text{ at the upper surface } z = H \tag{6}
\]

Here \(\frac{dH}{dt}\) is the constant velocity of the upper porous circular stepped plate approaching the lower impermeable circular stepped plate. Last conditions in Equations (5) and (6) are due to the vanishing of the couple stresses at \(z = 0\) and \(H\), respectively. Since, \(p\) is independent of \(z\), the solution of Equation (1), subject to the boundary conditions (5) and (6) is:

\[
u = \frac{1}{2\mu} \frac{dp}{dr} \left[2(z-H) + 2l^2 \left[1 - \left(\frac{\cos h(\frac{2z-H}{2r})}{\cos h(\frac{H}{2r})} \right) \right] \right] \tag{7}
\]

where \(l = 1/[\mu/\eta]^{1/2}\) is the couple stress parameter.

The volume flux of the lubricant is given by:

\[
Q = 2\pi r \int_0^H udz \tag{8}
\]

where \(2\pi r\) is the circumference of the circle. On using Equations (7) and (8), we have:

\[
Q = -\frac{\pi r}{6\mu} \frac{dp}{dr} f(H.l) \tag{9}
\]
where:

\[f(H, l) = H^3 - 12l^2 h + 24l^3 \tan h \left(\frac{H}{2l} \right) \]

Integration of the continuity Equation (3) over the film thickness and the use of boundary conditions \(w = w^* + dH/dt \), and \(w = 0 \) gives:

\[\frac{\partial Q}{\partial r} = 2\pi r \left(w^* + \frac{dH}{dt} \right) \tag{10} \]

Integration of the continuity Equation (10) with respect to \(r \) and using the condition \(Q = 0 \) at \(r = 0 \) gives:

\[Q = \pi \left(w^* + \frac{dH}{dt} \right) r^2 \tag{11} \]

The modified Reynolds type equation for determining the pressure is obtained from Equations (9) and (11) in the form:

\[\frac{dp_i}{dr} = -\frac{6\mu r (w^* + \frac{dH}{dt})}{S_i(H_i, l)} \tag{12} \]

where \(p_i = p_1, h_i = h_1 \) for \(0 \leq r \leq KR \)

\[p_i = p_2, h_i = h_2 \] for \(KR \leq r \leq R \)

\[S_i(H_i, l) = H_i^3 - 12l^2 H_i + 24l^3 \tan h \left(\frac{H_i}{2l} \right) \]

\(p_1 \) and \(p_2 \) being the pressure in the region-I (\(0 \leq r \leq KR \)) and in the region-II (\(KR \leq r \leq R \)), respectively. The relevant boundary condition for the pressure are:

\[p_1 = p_2 \text{ at } r = KR \tag{13} \]

\[p_2 = 0 \text{ at } r = R \tag{14} \]

The flow of couple stress fluid in a porous medium is governed by the modified form of the Darcy’s law, which accounts for the (Naduvinamani et al., 2002) polar effects:

\[\overline{w_o} = -\frac{\partial}{\mu(1-\beta)} \nabla p^* \tag{15} \]

where \(\overline{w_o} = (u^*, w^*) \); \(u^*, w^* \) are the Darcy’s velocity components along \(r \) and \(z \) directions, respectively, \(p^* \) is the pressure in the porous region, \(\beta = \eta/\mu_0 \) and \(\phi \) is the permeability of the porous medium. The parameter \(\beta \) represents the ratio of microstructure size of polar additives to the pore size of the porous medium. If \(\sqrt{1/(\mu_0/\eta)} \approx \sqrt{\phi} \), i.e., \(\beta \approx 1 \) then the microstructure additives present in the Newtonian fluid block the pores of the porous region and this reduces the Darcy flow through the porous matrix. When microstructure is very small compared to the porous size, i.e., \(\beta \ll 1 \), the polar additives percolate in to the porous matrix.
The pressure p^* in the porous region satisfies the Laplace equation \(\frac{\partial^2 p^*}{\partial x^2} + \frac{\partial^2 p^*}{\partial y^2} + \frac{\partial^2 p^*}{\partial z^2} = 0 \). Since p^* is independent of θ in cylindrical coordinates r, θ and z, it reduces to:

\[
\frac{\partial^2 p^*}{\partial r^2} + \frac{1}{r} \frac{\partial p^*}{\partial r} + \frac{\partial^2 p^*}{\partial z^2} = 0
\]

(16)

Using Equation (15) in (12), we get:

\[
\frac{d \rho_i}{dr} = -\frac{6 \mu r}{S_i(H_i, l)} \left[\frac{dH}{dt} - \frac{\partial p^*}{\partial z} \mid \frac{z}{H} = H \right]
\]

(17)

Taking the expected values of both sides of Equation (17), we get:

\[
E\left(\frac{d \rho_i}{dr} \right) = -\frac{6 \mu r}{S_i(H_i, l)} \left[\frac{dE(H)}{dt} - \frac{\partial E(p^*)}{\partial z} \mid \frac{z}{H} = H \right]
\]

(18)

where expectancy operator $E(\cdot)$ is defined by:

\[
E(\cdot) = \int_{-\infty}^{\infty} (\cdot) f(h_s) dh_s
\]

(19)

and f is the probability density function of the stochastic film thickness h_s. In many real engineering problems, sliding surfaces show a roughness in height distribution which is Gaussian in nature. Therefore, a polynomial form which approximates the Gaussian is chosen in the analysis. Such a probability density function is given by

\[
f(h_s) = \begin{cases}
\frac{35}{32} \left(c^2 - h_s^2 \right)^3, & -c < h_s < c \\
0, & \text{otherwise}
\end{cases}
\]

(20)

where "c" is the half total range of random film thickness variable and function terminates at $c = \pm 3\sigma$ with σ being the standard deviation.

The relevant boundary conditions for pressure in the film region are:

\[
\frac{dE(p)}{dr} = 0 \quad \text{at} \quad r = 0
\]

(21)

\[
E(p) = 0 \quad \text{at} \quad r = a
\]

(22)

\[
p^*(r, z) = 0 \quad \text{at} \quad r = a
\]

(23)

\[
\frac{\partial p^*(r, z)}{\partial z} = 0 \quad \text{at} \quad z = H + H^*
\]

(24)

\[
p^*(r, z) = \varphi(r) \quad \text{at} \quad z = H + H^*
\]

(25)

and the interface condition is:

\[
E[p(r)] = E[p^*(r, H)]
\]

(26)
where \("a" \) is the outer radius of the disk and \(H^* \) is the thickness of the porous layer. Conditions (22) and (23) show that both the film region and the porous facing are open to the ambient pressure. There is no flow through the impervious boundary at the top of the porous medium in condition (24). Pressure continuity at the film plate interface requires condition (25).

Using Equation (19) for the distribution function, we have:

\[
E(H) = h
\]
(27)

The solution of the Equation (16) by the method of separation of variables of the form \(\dot{p}^* = RZ \), where \(R \) is a function of \(r \) only and \(Z \) is a function of \(z \) only is:

\[
\frac{1}{R} \left(\frac{d^2R}{dr^2} + \frac{1}{r} \frac{dR}{dr} \right) = -\frac{1}{Z} \frac{d^2Z}{dz^2}
\]
(28)

Putting each side equal to \(-\alpha^2\), we have:

\[
\dot{p}^* = \left\{ AJ_0(\alpha_n r) + B\dot{y}_0(\alpha_n r) \right\} \{ C \ \sin h \ \alpha_n z + D \ \cos h \ \alpha_n z \}
\]
(29)

(or) the equivalent form:

\[
\dot{p}^* = \left\{ AJ_0(\alpha_n r) + B\dot{y}_0(\alpha_n r) \right\} \{ Ce^{-\alpha_n z} + De^{+\alpha_n z} \}
\]

\(J_0(\alpha_n r) \) are Bessel functions of first kind and zeroth order and \(\alpha_n \) is the nth eigen value which satisfies:

\[
J_0(\alpha_n a) = 0
\]
(30)

Applying boundary condition (23) at \(r = a \), the most general solution is:

\[
\dot{p}^* = \sum_a AJ_0(\frac{\alpha_n r}{a}) \sin h \left(\frac{\alpha_n z}{a} \right)
\]
(31)

Also:

\[
\frac{\partial \dot{p}^*}{\partial z} = \sum_a A \frac{\alpha_n}{a} J_0 \left(\frac{\alpha_n r}{a} \right) \cos h \left(\frac{\alpha_n z}{a} \right)
\]

Applying condition (24) and (25):

\[
\varphi(r) = \sum_a AJ_0 \left(\frac{\alpha_n r}{a} \right) \sin h \left(\frac{\alpha_n (H+H^*)}{a} \right), \ (0 < r < a)
\]

Hence:

\[
A \ \sin h \left[\frac{\alpha_n (H+H^*)}{a} \right] = \frac{2}{J_1^2(\alpha_n)} \int_0^1 r \varphi(r) J_0 \left(\frac{\alpha_n r}{a} \right) dr, \ (0 < \frac{r}{a} < 1)
\]

Substituting \(A \) in Equation (31),

\[
\dot{p}^*(r, z) = \sum_a 2J_0 \left(\frac{\alpha_n r}{a} \right) \sin h \left(\frac{\alpha_n z}{a} \right) \int_0^1 r \varphi(r) J_0 \left(\frac{\alpha_n r}{a} \right) dr
\]
(32)
Substituting Equations (27) and (31) in (18), results in:

\[
\left(\frac{dE(p_i)}{dr} \right) = -\frac{6\mu r}{S_i(H_i, l)} \left(\frac{dh}{dt} \right) \left(1-\beta \right) \left\{ \sum A_n \frac{z_n}{a} J_0 \left(\frac{z_n r}{a} \right) \cos \left(\frac{z_n h}{a} \right) \right\} \tag{33}
\]

where \(A_n' = E(Ae^{\beta H}) \) are Fourier coefficients to be determined. Integrating Equation (33) with respect to \(r \) and making use of the boundary conditions (21):

\[
E(p_i) = -\frac{3\mu}{S_i(H_i, l)} \frac{dh}{dt} \left(r^2 - a^2 \right) + \frac{3\phi}{(1-\beta)S_i(H_i, l)} \left\{ \sum A_n \frac{z_n}{a} J_0 \left(\frac{z_n r}{a} \right) \cos \left(\frac{z_n h}{a} \right) \right\} \tag{34}
\]

Substituting Equations (32) and (34) in the interface condition (26) and using orthogonality of the eigen function \(J_0(\alpha r) \), we get:

\[
A_n' = \frac{E}{\left\{ \sum \frac{2\beta}{\sin h} \sin \left(\frac{z_n h}{a} \right) \right\}} \left\{ \sum A_n \frac{z_n}{a} J_0 \left(\frac{z_n r}{a} \right) \cos \left(\frac{z_n h}{a} \right) \right\} \tag{35}
\]

3. Solution of the problem
The non-dimensional load carrying capacity is obtained by integrating pressure over the bearing surfaces and it is given by:

\[
w = 2\pi \int_0^{KR} r p_1 dr + 2\pi \int_{KR}^R r p_2 dr
\]

which in non-dimensional form is:

\[
w^* = \frac{2\mu h_2^3}{3\pi \mu R^3 \left(w^* + \frac{dW}{dt} \right)} = \frac{K^4}{S_1(h^*, l^*)} + \frac{1-K^4}{S_2(1, l^*)} \tag{36}
\]

where \(h^* = h_1/h_2 \) and \(l^* = 2l/h_2 \)

\[
S_1(h^*, l^*) = h^* - 3h^2 - 3h^3 \tan \left(\frac{h^*}{l^*} \right)
\]

\[
S_2(1, l^*) = 1 - 3h^2 + 3h^3 \tan \left(\frac{1}{l^*} \right)
\]

The squeezing time for reducing the film thickness from an initial value \(h_0 \) to \(h_2 \) to a final value \(h_f \) is given by:

\[
t = \frac{-3\mu R^4}{2w} \int_{h_0}^{h_f} \left(\frac{K^4}{S_1(h^*, l^*)} + \frac{1-K^4}{S_2(1, l^*)} \right) dh_2
\]
which in non-dimensional form is:

\[t^* = \int_{h_f}^1 \left\{ K^4 f_1(h_s^*, h_2^*, l^*) + f_2(h_2^*, l^*) \right\} dh_2^* \]

(37)

where:

\[f_1(h_s^*, h_2^*, l^*) = \left[h_2^{*3} + h_s^{*3} + 3h_2^{*2}h_s^* + 3h_2^{*}h_s^{*3} - 3l^{*2}h_2^* \left(1 + \frac{h_s^*}{h_2^*} \right) + 3l^{*3} \tan h \left(\frac{h_2^*}{l^*} \right) \right]^{-1} \]

\[f_2(h_2^*, l^*) = \frac{1 - K^4}{h_2^{*3} - 3l^{*2}h_2^* + 3l^{*3} \tan h \left(\frac{h_2^*}{l^*} \right)} \]

\[h_f^* = \frac{h_f}{h_0}, \quad h_2^* = \frac{h_2}{h_0}, \quad h_s^* = \frac{h_s}{h_0}, \quad l^* = \frac{2l}{h_0} \]

4. Results and discussions

The combined effects of surface roughness and couple stresses on the performance of porous squeeze film circular stepped plates are investigated. The squeeze film characteristics are analyzed with respect to various non-dimensional parameters, namely:

- couple stress parameter \(\tau = l^* = (\eta/\mu)^{1/2}h_0 \);
- the permeability parameter \(\psi = (D/\mu)^{1/2}h_0^3 \); and
- roughness parameter \(C = (c/h_0) \).

The ratio \((\eta/\mu) \) is of dimension length squared and this length may be regarded as the chain length of polar additives in the lubricant. This can also be characterized as rational length of the fluid.

Hence, the couple stress parameter \(l^* \) provides the mechanism of interaction of the lubricant with the bearing geometry. The numerical results computed are presented in graphical and tabular forms. This paper predicts the influence of couple stresses on the squeeze film characteristics of circular step bearings on the basis of Stokes couple stress fluid theory. The effect of couple stresses can be observed with the aid of non-dimensional couple stress parameter \(l^* = 2l/h_2 \) where \(l = (\eta/\mu)^{1/2} \). Hence the parameter \(l^* \) provides the mechanism of the interaction of the lubricant with the circular step bearing geometry.

Figure 2 shows the variation of non-dimensional squeeze film pressure \(p^*(r, z) \) as a function of dimensionless coordinates \(r \) and \(z \) for other fixed parameters. It is observed from this figure that, as coordinates of \(r \) and \(z \) increases, the pressure built-up in fluid film region also increases.
Load carrying capacity

The variation of non-dimensional load carrying capacity W^* as a function of H^* for different values of couple stress parameters $l^* = 0.0, 0.2, 0.3, 0.4$ corresponds each with $K = 0.6, 0.7, 0.8, 0.9, 1.0$ for circular stepped plates as shown in Figure 3. In the limiting case, $C \to 0$ and $l^* = 0.0$, the present analysis reduce to classical case (i.e. Newtonian) studied by Murti (1974) as shown in Figure 3.

The variation of non-dimensional load carrying capacity W^* as a function of H^* for different values of couple stress parameters $l^* = 0.0$ (studied by Murti, 1974), 0.5, 0.8, 1.0 corresponds each with $K = 0.6, 0.7, 0.8, 0.9, 1.0$ for circular stepped plates as shown in Figure 4.

The variation of non-dimensional load carrying capacity W^* as a function of H^* for different values of couple stress parameters $l^* = 0.0$ (studied by Murti, 1974), 0.6, 0.7, 0.9 corresponds each with $K = 0.6, 0.7, 0.8, 0.9, 1.0$ for circular stepped plates as shown in Figure 5.

The couple stress parameter $l^* = 0.0$ (studied by Murti, 1974) in the graph corresponds to the Newtonian case. Compared with the Newtonian lubricant case, the effect of couple stress in the present study increase the load carrying capacity and this increase in W^* is more accentuated for longer values of l^*.

Figure 2.
Variation of distribution of pressure $p^*(r, z)$ for $\alpha_n = 1.9$, $a = 0.5$, $H = 1.5$, $H^* = 0.5$ and using Bessel function of first kind

Figure 3.
Couple stresses for larger values of $l^* = 0.0$ (Newtonian), 0.2, 0.3, 0.4 increase the W^* for different values of K
Figures 6-9 depict the variation of non-dimensional load carrying capacity W_* as a function of H_* for both Newtonian lubricants ($l^*=0.0$) studied by Murti (1974) along with present study of different couple stress lubricants ($l^*=0.3, 0.5, 0.7$ and 0.9) with $K=0.6, 0.7, 0.8$ and 1.0, respectively. It is observed that W_* increases for decreasing value of K and this increase in W_* is more pronounced for larger values of H_*. The relative percentage increase in $W_*, R_{W*} = (W_{*\text{Couple stress}} - W_{*\text{Newtonian}})/W_{*\text{Newtonian}} \times 100$ for different values of K and H_* is given in Table I.
Time height relationship

The most important characteristics of the squeeze film bearings is the time required for reducing the initial film thickness \(h_0 \) to \(h_2 \) to a final value \(h_f \). The variations of the non-dimensional time of approach \(t^* \) as a function of \(h_n^* \) for different values of \(l^* \) for both Newtonian \((l^* = 0.0) \) studied by Murti (1974) and present study of couple stress lubricants \((l^* = 0.3, 0.5, 0.7 \text{ and } 0.9) \) along with \(K = 0.5, 0.6, 0.7, 0.8 \text{ and } 0.9 \) are plotted in

![Graph](image)

Figure 6.

Depicts \(W^* \) as a function of \(H^* \) for both Newtonian lubricants \(l^* = 0.0 \) along with different couple stress lubricants with \(K = 0.6 \)

![Graph](image)

Figure 7.

Depicts \(W^* \) as a function of \(H^* \) for both Newtonian lubricants \(l^* = 0.0 \) along with different couple stress lubricants with \(K = 0.7 \)

![Graph](image)

Figure 8.

Depicts \(W^* \) as a function of \(H^* \) for both Newtonian lubricants \(l^* = 0.0 \) along with different couple stress lubricants with \(K = 0.8 \)

![Graph](image)

Figure 9.

Depicts \(W^* \) as a function of \(H^* \) for both Newtonian lubricants \(l^* = 0.0 \) along with different couple stress lubricants with \(K = 1.0 \)
Figures 10-14, respectively. It is found that t^* increases for decreasing values of K.

The variations of t^* with h_nf for different values of step height h_n shows that t^* decreases for increasing values of non-dimensional step height h_n^*. It is observed that the presence of couple stresses provides an increase in the response time compared to the Newtonian lubricant case. The relative increase in t^*, $R_{t^*} = (t^*_{Couple stress} - t^*_N) / t^*_N$ × 100 for different values of K and H^* is given in Table II.

Table I. Variation of R_{t^*} for different values of l^* and K

<table>
<thead>
<tr>
<th>l^*</th>
<th>K</th>
<th>$H^* = 1.1$</th>
<th>$H^* = 1.3$</th>
<th>$H^* = 1.5$</th>
<th>$H^* = 1.7$</th>
<th>$H^* = 1.9$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.6</td>
<td>92.0220458</td>
<td>45.1117843</td>
<td>16.63811068</td>
<td>16.4221566</td>
<td>16.5212564</td>
</tr>
<tr>
<td>0.7</td>
<td>17.8305257</td>
<td>12.4134794</td>
<td>10.4303379</td>
<td>9.886072426</td>
<td>9.96525679</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>13.79575267</td>
<td>2.37396694</td>
<td>2.1957097</td>
<td>6.87486813</td>
<td>23.06849387</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>7.686872615</td>
<td>13.6746143</td>
<td>7.410217171</td>
<td>5.341671076</td>
<td>1.01870434</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>99.5120781</td>
<td>55.11130473</td>
<td>53.9263629</td>
<td>53.77229343</td>
<td>54.02263814</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>55.19093163</td>
<td>47.51270619</td>
<td>45.02610399</td>
<td>44.54032759</td>
<td>44.8764985</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>49.07657158</td>
<td>35.02517457</td>
<td>29.88096464</td>
<td>28.41513109</td>
<td>28.53861616</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>39.82688845</td>
<td>14.81038921</td>
<td>14.53254961</td>
<td>12.49463468</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table II.

<table>
<thead>
<tr>
<th>l^*</th>
<th>K</th>
<th>$H^* = 1.1$</th>
<th>$H^* = 1.3$</th>
<th>$H^* = 1.5$</th>
<th>$H^* = 1.7$</th>
<th>$H^* = 1.9$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.6</td>
<td>99.5120781</td>
<td>55.11130473</td>
<td>53.9263629</td>
<td>53.77229343</td>
<td>54.02263814</td>
</tr>
<tr>
<td>0.7</td>
<td>111.0185935</td>
<td>99.95912649</td>
<td>96.71825751</td>
<td>96.33121461</td>
<td>102.6879344</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>101.7917269</td>
<td>81.52598197</td>
<td>74.73860482</td>
<td>73.17353495</td>
<td>73.78625102</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>87.8336564</td>
<td>51.6864592</td>
<td>37.10097082</td>
<td>31.59167578</td>
<td>30.08283447</td>
<td></td>
</tr>
</tbody>
</table>

Note: Variation of non-dimensional time of approach t^* with h_n^* for different values of couple stress lubricant l^* with $K = 0.5$ and $h_n^* = 0.15$

Figure 10. Depicts l^* as a function of h_n^* for both Newtonian $l^* = 0.0$ along with different couple stress lubricants with $K = 0.5$

Figure 11. Depicts l^* as a function of h_n^* for both Newtonian $l^* = 0.0$ along with different couple stress lubricants with $K = 0.6$
5. Conclusion
The squeeze film lubrication between porous transversely circular stepped plates with couple stress fluid is studied on the basis of Stokes microcontinuum theory for couple stress fluids. On the basis of the theoretical results presented, the following conclusions are drawn:

- The effect of couple stresses enhances the load carrying capacity significantly. This increase in load is three-fourth (nearly 75 percent) higher in comparison with the corresponding Newtonian case.

- The relative increase in load carrying capacity R_{n*} is found to be a function of K and l^*.

- The relative squeeze film time R_{t*} is found to be a function of l^* and K and R_{t*} increases for increasing values of l^* and decreases for increasing values of K.

Therefore, the theoretical results presented here suggest that the squeeze film characteristics between porous transversely circular stepped plates can be improved by the use of lubricants with microstructure additives.

Figure 12. Depicts t^* as a function of h^*_f for both Newtonian $l^* = 0.0$ along with different couple stress lubricants with $K = 0.7$

Note: Variation of non-dimensional time of approach t^* with h^*_f for different values of couple stress lubricant l^* with $K=0.7$ and $h^*_s=0.15$

Figure 13. Depicts t^* as a function of h^*_f for both Newtonian $l^* = 0.0$ along with different couple stress lubricants with $K = 0.8$

Note: Variation of non-dimensional time of approach t^* with h^*_f for different values of couple stress lubricant l^* with $K=0.8$ and $h^*_s=0.15$

Figure 14. Depicts t^* as a function of h^*_f for both Newtonian $l^* = 0.0$ along with different couple stress lubricants with $K = 0.9$

Note: Variation of non-dimensional time of approach t^* with h^*_f for different values of couple stress lubricant l^* with $K=0.9$ and $h^*_s=0.15$
The variations of non-dimensional time t^* for various values of roughness parameters K and l^* are plotted in Figures 10-14. The squeeze film time is lengthened for the couple stress fluids compared to Newtonian fluid. The squeezing time for couple stress fluid in the presence of surface roughness is found to be longer for all values of couple stress parameter l^* compared to Newtonian fluid. The couple stress fluid provides more resistance to the moving plate and hence takes longer time to reduce the required height compared to Newtonian case. This delayed squeezing time reduces the coefficient of friction and also results in negligible rate of wear of the bearing surfaces.

The variations of non-dimensional time t^* for various values of roughness parameters K and l^* are plotted in Figures 10-14. The squeeze film time is lengthened for the couple stress fluids compared to Newtonian fluid. The squeezing time for couple stress fluid in the presence of surface roughness is found to be longer for all values of couple stress parameter l^* compared to Newtonian fluid. The couple stress fluid provides more resistance to the moving plate and hence takes longer time to reduce the required height compared to Newtonian case. This delayed squeezing time reduces the coefficient of friction and also results in negligible rate of wear of the bearing surfaces.

Table II. Variation of R_t for different values of l^* and K

<table>
<thead>
<tr>
<th>l^*</th>
<th>K</th>
<th>$h_n^* = 0.3$</th>
<th>$h_n^* = 0.5$</th>
<th>$h_n^* = 0.7$</th>
<th>$h_n^* = 0.9$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.6</td>
<td>238.096695</td>
<td>83.75710094</td>
<td>42.84505176</td>
<td>26.31075202</td>
</tr>
<tr>
<td>0.7</td>
<td>224.7211938</td>
<td>76.58243086</td>
<td>38.97743636</td>
<td>24.1064023</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>198.524121</td>
<td>63.41589838</td>
<td>32.14875856</td>
<td>20.31890077</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>139.706952</td>
<td>37.51322378</td>
<td>19.65294498</td>
<td>13.68619913</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>0.6</td>
<td>663.3007932</td>
<td>232.8757154</td>
<td>118.0517292</td>
<td>71.97632907</td>
</tr>
<tr>
<td>0.8</td>
<td>630.1709388</td>
<td>214.9582039</td>
<td>107.9402752</td>
<td>66.13882677</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>565.2828176</td>
<td>182.0767735</td>
<td>90.08778013</td>
<td>56.08734099</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>0.6</td>
<td>419.598165</td>
<td>117.3899652</td>
<td>57.4135997</td>
<td>38.49872436</td>
</tr>
<tr>
<td>0.8</td>
<td>1,301.92705</td>
<td>458.083872</td>
<td>232.0894666</td>
<td>141.2211301</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>1,240.04292</td>
<td>424.7178058</td>
<td>213.9172462</td>
<td>130.8084691</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>663.3007932</td>
<td>232.8757154</td>
<td>118.0517292</td>
<td>71.97632907</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>630.1709388</td>
<td>214.9582039</td>
<td>107.9402752</td>
<td>66.13882677</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>565.2828176</td>
<td>182.0767735</td>
<td>90.08778013</td>
<td>56.08734099</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>0.6</td>
<td>1,240.04292</td>
<td>424.7178058</td>
<td>213.9172462</td>
<td>130.8084691</td>
</tr>
<tr>
<td>0.8</td>
<td>846.7093786</td>
<td>248.9565442</td>
<td>123.177159</td>
<td>81.50658788</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>1,301.92705</td>
<td>458.083872</td>
<td>232.0894666</td>
<td>141.2211301</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>663.3007932</td>
<td>232.8757154</td>
<td>118.0517292</td>
<td>71.97632907</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>630.1709388</td>
<td>214.9582039</td>
<td>107.9402752</td>
<td>66.13882677</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>565.2828176</td>
<td>182.0767735</td>
<td>90.08778013</td>
<td>56.08734099</td>
<td></td>
</tr>
</tbody>
</table>

References

Corresponding author
A. Chamkha can be contacted at: achamkha@yahoo.com