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ABSTRACT 

This paper is focused on the study of heat and mass transfer characteristics of an unsteady MHD boundary 
layer flow through porous medium over a stretching sheet in the presence of thermo-diffusion and diffusion-
thermo effects with thermophoresis, thermal radiation and non-uniform heat source/sink. The transformed 
conservation equations are solved numerically subject to the boundary conditions using an optimized, 
extensively validated, variational finite element analysis. The numerical code is validated with previous 
studies on special cases of the problem. The influence of important non-dimensional parameters, namely   
suction parameter ( ௪݂), magnetic parameter (M), unsteadiness parameter (α), Soret parameter (Sr), Dufour 
parameter (Du) thermophoretic parameter (߬), space dependent (A1) and temperature dependent parameters 
(B1) and radiation parameter(An)  on the velocity, temperature and concentration fields as well as the skin-
friction coefficient, Nusselt number and Sherwood number are examined in detail and the results are shown 
graphically and in tabular form to know the physical importance of the problem. It is found that the 
imposition of wall fluid suction ( ௪݂>0) in the flow problem has the effect of depreciating the velocity, 
temperature and concentration boundary layer thicknesses at every finite value of η. This deceleration in 
momentum, thermal and concentration profiles is because of the fact that suction is taken away the warm 
fluid from the surface of the stretching sheet.  

Keywords: Stretching sheet; Soret and dufour effects; Thermophoresis; MHD; Heat source/sink; Finite 
element method. 

NOMENCLATURE 

A1 coefficient of space-dependent heat  
source/sink 

a, c empirical constant 
B1 coefficient of temperature-dependent heat  

source/sink 
C concentration of the species 
cp specific heat at constant pressure 
cs concentration susceptibility  
Cw uniform constant concentration 
C∞ free stream concentration ܥ skin-friction coefficient 
Dm mass diffusion coefficient  
Du Dufour number ௪݂ dimensionless suction velocity 
K1 permeability parameter 
kt thermal diffusion ratio 
M magnetic parameter 
Nux Nusselt number 
Pr Prandtl number 

qr radiative heat flux ݍᇱᇱᇱ non-uniform heat source/sink ܴ݁௫ local Reynolds number 
Sc Schmidt number 
Shx Sherwood number 
Sr Soret number 
t time  
T temperature of the fluid  
Tm mean fluid temperature 
Tw uniform constant temperature  
T∞ free stream temperature  ܷ௪ stretching surface velocity  
u velocity in the x-direction  
Vt thermophoretic velocity 
v velocity in the y-direction  
 dynamic viscosity ߤ 
θ non-dimensional temperature ߪ∗ Stephan-Boltzman constant 
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σ electrical conductivity ߙ unsteadiness parameter ߬ thermophoretic parameter 
ν kinematic viscosity ߩ density of the fluid  

 similarity variable ߟ  thermal conductivity ߢ
φ non-dimensional concentration       

 

1. INTRODUCTION 

The problem of two dimensional boundary layer 
flow, heat and mass transfer over a continuous 
stretching heated surface through porous medium 
finds numerous and wide range of applications in 
many engineering and manufacturing disciplines. 
For example, in a melt spinning process, the 
extrudate from the die is generally drawn and 
simultaneously stretched into a sheet or filament, 
which is thereafter solidified through rapid 
quenching or gradual cooling by direct contact with 
water or chilled metal rolls. In fact, stretching will 
bring in a unidirectional orientation to the extrudate, 
thereby improving the quality of the final product 
considerably which greatly depends on the flow, 
heat and mass transfer mechanism. Glass blowing, 
extrusion process, melt-spinning, food-stuff 
processing, design of heat exchangers, wire and 
fiber coating, glass-fiber production, manufacture of 
plastic and rubber sheets, cooling of a large metallic 
plate in a bath and continuous casting are the other 
areas where this kind of problems has applications.  

In industry, polymer sheets and filaments are 
manufactured by continuous extrusion of the 
polymer from a die. The thin polymer sheet 
constitutes a continuously moving surface with a 
non-uniform velocity through an ambient fluid. The 
problem of heat and mass transfer flow due to 
stretching sheet has been implemented on many 
flow situations. The problem of steady two-
dimensional viscous incompressible fluid caused by 
a stretching sheet was first examined by Sikiadis 
(1961). The thermal behavior of the problem was 
experimentally verified by Tsou et al. (1967). Later, 
Crane (1970) has expended the problem of Sikiadis 
(1961) in which he studied the flow past a 
stretching plate by taking linearly varying velocity 
with a distance from a fixed point. Gupta et al. 
(1977) have studied the heat and mass transfer 
characteristics of a fluid over a stretching sheet with 
suction or blowing. Grubka and Bobba (1985) 
studied the heat transfer characteristics over a 
continuous stretching surface with variable 
temperature. Ali (1994) has investigated flow and 
heat transfer characteristics on a continuous 
stretching surface using power-law velocity and 
temperature distributions. Vajravelu (1994) has 
analyzed the study of flow and heat transfer in a 
saturated porous medium over an impermeable 
stretching sheet. Two cases have been discussed in 
this problem, (i) the sheet with prescribed sheet 
temperature (PST-case) and (ii) the sheet with 
prescribed wall heat flux (PHF-case). 

In all the previous investigations, the effects thermal 
radiation and magnetic field on the flow and heat 
transfer have not been studied. It is well known fact 
that radiative heat transfer flow is very important in 

manufacturing industries for the design of reliable 
equipment’s, nuclear plants, gas turbines and various 
propulsion devices for aircraft, missiles, satellites 
and space vehicles. Also, the effects of thermal 
radiation on forced and free convection flow are 
important in the content of space technology and 
process involving high temperature. It is known fact 
that, the transverse magnetic field has specific 
industrial applications in polymer processing 
technology. Plumb et al. (1981) was the first to 
examine the effect of horizontal cross-flow and 
radiation on natural convection from vertical heated 
surface in a saturated porous media. Recently, Pal D 
et al. (2010) has discussed radiation effect on hydro 
magnetic Darcy-Forchheimer mixed convention flow 
over stretching sheet. Mansour and El-Shaer (2001) 
analyzed the effects of thermal radiation on magneto 
hydrodynamic natural convection flows in a fluid-
saturated porous media. Pal (2005) studied heat and 
mass transfer in stagnation-point flow toward a 
stretching sheet in the presence of buoyancy force 
and thermal radiation. Vajravelu and Rollins (1992) 
studied heat transfer in electrically conducting fluid 
over a stretching sheet by taking into account of 
magnetic field only. Molla et al. (2011) studied the 
effect of thermal radiation on a steady two-
dimensional natural convection laminar flow of 
viscous incompressible optically thick fluid along a 
vertical flat plate with streamwise sinusoidal surface 
temperature. Abo-Eldahab and El-Gendy (2004) 
investigated the problem of free convection heat 
transfer characteristics in an electrically conducting 
fluid near an isothermal sheet to study the combined 
effect of buoyancy and radiation in the presence of 
uniform transverse magnetic field. 

In recent years, it is found that thermophoresis is a 
phenomenon and has many practical applications in 
removing small particles from gas streams, in 
determining exhaust gas particle trajectories from 
combustion devices, and in studying the particulate 
material deposition on turbine blades. It has been 
found that thermophoresis is the dominant mass 
transfer mechanism in the modified chemical vapor 
deposition (MCVD) process as currently used in the 
fabrication of optical fiber performs. Thermophoretic 
deposition of radioactive particles is considered to be 
one of the important factors causing accidents in 
nuclear reactors. A number of analytical and 
experimental papers in thermophoretic heat and mass 
transfer have been communicated. Talbot et al. 
(1980) presented a seminal study, considering 
boundary layer flow with thermophoretic effects, 
which has become a benchmark for subsequent 
studies. Several authors, Duwairi and Damseh 2008), 
Damseh et al. (2009), Mahdy and Hady (2009), Liu 
et al. (2009), Postelnicu (2007), Dinesh and Jayaraj 
(2009), Grosan et al. (2009),Tsai and Huang (2010) 
have investigated the influence of thermophoresis 
over a vertical plate, micro-channel, horizontal plate 
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and parallel plate, etc. 

Soret and Dufour effects are very significant in both 
Newtonian and non-Newtonian fluids when density 
differences exist in flow regime. The thermo-diffusion 
(Soret) effect is corresponds to species differentiation 
developing in an initial homogeneous mixture 
submitted to a thermal gradient and the diffusion-
thermo (Dufour) effect corresponds to the heat flux 
produced by a concentration gradient. Usually, in heat 
and mass transfer problems the variation of density 
with temperature and concentration give rise to a 
combined buoyancy force under natural convection 
and hence the temperature and concentration will 
influence the diffusion and energy of the species. 
Many papers are found in literature on Soret and 
Dufour effects on different geometries. Dulal Pal et 
al.(2014) has studied non-Darcian mixed convection 
heat and mass transfer flow over a stretching sheet 
with Soret - Dufour effect sohmic heating and viscous 
dissipation. MHD mixed convection flow with Soret 
and Dufour effects past a vertical plate embedded in 
porous medium was studied by Makinde (2011). 
Reddy et al. (2012) has presented finite element 
solution to the heat and mass transfer flow past a 
cylindrical annulus with Soret and Dufour effects. 
Recently, Chamkha et al. (2014) has studied the 
influence of Soret and Dufour effects on unsteady 
heat and mass transfer flow over a rotating vertical 
cone and they suggested that temperature and 
concentration fields are more influenced with the 
values of Soret and Dufour parameter. 

In all the above studies, the physical situation is related 
to the process of uniform stretching sheet. For the 
development of more physically realistic 
characterization of the flow configuration it is very 
useful to introduce unsteadiness into the flow, heat and 
mass transfer problems. Very few studies have been 
found in literature on unsteady boundary flows over a 
stretching sheet. Wang (1990) was first studied the 
unsteady boundary layer flow of a liquid film over a 
stretching sheet. Later, Elbashbeshy and Bazid (2004) 
have presented the heat transfer over an unsteady 
stretching surface. Tsai et al. (2008) has discussed 
flow and heat transfer characteristics over an unsteady 
stretching surface by taking heat source into the 
account. Ishak et al. (2009) analyzed the effect of 
prescribed wall temperature on heat transfer flow over 
an unsteady stretching permeable surface. Ishak (2010) 
has presented unsteady MHD flow and heat transfer 
behavior over a stretching plate. Recently, Dulalpal 
(2011) has described the analysis of flow and heat 
transfer over an unsteady stretching surface with non-
uniform heat source/sink and thermal radiation. 
Chamkha et al. (2001, 2010, 2011a, 2011b) have 
discussed unsteady three-dimensional heat and mass 
transfer flow with heat generation/absorption. 

To the best of the authors’ knowledge, no studies 
have been made to analyze the combined influence of 
Soret and Dufour effects on unsteady heat and mass 
transfer flow of a viscous incompressible electrically 
conducting fluid over a stretching sheet with thermal 
radiation, non-uniform heat source/sink and 
thermophoresis particle deposition. Hence, this 
problem is addressed in this paper. The conservation 
of mass, momentum, energy and diffusion equations 

were transformed into a two-point boundary value 
problem. In this article, we employ an extensively 
validated, highly efficient, variational finite-element 
method to study the effect of unsteadiness on heat 
and mass transfer flow in a porous medium past a 
semi-infinite stretching sheet. The problem presented 
here has many practical applications, such as, 
technological, manufacturing industries, MHD 
generators, plasma studies, nuclear reactors, 
geothermal energy extractions and polymer extrusion. 

2. FORMULATION OF THE PROBLEM 

Consider a two-dimensional unsteady laminar 
boundary layer flow of viscous incompressible fluid 
over a continuous moving stretching sheet which issue 
from a thin slot. The coordinate system is such that ݔ-
axis is taken along the stretching surface in the 
direction of the motion with the slot at origin, and the ݕ-axis is perpendicular to the surface of the sheet as 
shown schematically in Fig.1. A uniform transverse 
magnetic field (ݔ)ܤ is applied along the ݕ-axis. The 
surface of the sheet is maintained at uniform 
temperature and concentration, ௪ܶandܥ௪ , respectively, 
and these values are assumed to be greater than the 
ambient temperature and concentration, ஶܶandܥஶ, 
respectively. The flow is assumed to be confined in a 
region y > 0.We consider the non-uniform internal 
heat generation/absorption in the flow to get the 
temperature and concentration differences between the 
surface and the ambient fluid. We assume that the 
velocity is proportional to its distance from the slit. 
Under the usual boundary layer approximation, the 
governing equations describing the momentum, energy 
and concentration in the presence of radiation, 
thermophoresis and other important parameters take 
the following form: 
 

 
Fig. 1. Flow configuration and coordinate 

system. 
 డ௨డ௫ + డ௩డ௬ = 0                  (1) 

ߩ ൬߲߲ݐݑ + ݑ ݔ߲ݑ߲ + ݒ ൰ݕ߲ݑ߲ = ߤ ߲ଶݕ߲ݑଶ − ଵߥ݇ ݑ −  ݑଶܤߪ

ݐ߲߲ܶ (2) + ݑ ݔ߲߲ܶ + ݒ ݕ߲߲ܶ = ܿߩߢ ߲ଶ߲ܶݕଶ − ܿߩ1 ݕ߲ݍ߲  

+ ܿߩ1 (ᇱᇱᇱݍ) + ்݇ܿ௦ܿܦ ߲ଶݕ߲ܥଶ 

            (3)  
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ݐܥ߲߲ + ݑ ݔ߲ܥ߲ + ݒ ݕ߲ܥ߲ = ܦ ߲ଶݕ߲ܥଶ 

                     + ்݇ܶܦ ߲ଶ߲ܶݕଶ − ݕ߲߲ (்ܸ  (4)                     (ܥ

The associated boundary conditions are  ݑ = ܷ௪(ݔ, ,(ݐ ݒ = ௪ܸ , ܶ = ௪ܶ(ݔ, ܥ, (ݐ = ,ݔ)௪ܥ  ,(ݐ
at ݑ (5)                                                                ,0 = ݕ ՜ 0, ܶ ՜ ஶܶ , ܥ ՜ ݕ ݏܽ      , ஶܥ ՜ ∞.            (6) 

where ݑ and ݒ are the components of velocity along ݔ and ݕ directions, respectively and ݐ is the 
time.ܷ௪(ݔ,  is the stretching sheet(ݐ
velocity, ௪ܶ(ݔ,  is the stretching surface (ݐ
temperature, ܥ௪(ݔ,  is the concentration of the (ݐ
stretching surface, ஶܶ is the temperature far away 
from the stretching surface with ௪ܶ > ஶܶ , ܥஶ is 
the concentration far away from the stretching 

surface with ܥ௪ > ஶ. The term ௪ܸܥ = −ටఔೢଶ௫ ݂(0) 

represents the mass transfer at the surface with ௪ܸ< 
0 for suction and ௪ܸ> 0 for injection.  

The non-uniform heat source/sink, ݍᇱᇱᇱ, is defined as ݍᇱᇱᇱ = ೢ(௫,௧)௫ఔ )ଵܣ) ௪ܶ − ஶܶ)݂ᇱ + (ܶ − ஶܶ)ܤଵ] 
where ܣଵ and  ܤଵ are the coefficients of space and 
temperature-dependent heat source/sink, 
respectively. The case ܣଵ > 0 , ଵܤ > 0 corresponds 
to internal heat source and the case  ܣଵ < 0 , ଵܤ < 0 
corresponds to internal heat sink. 

Due to stretching of the sheet the flow is caused and 
it moves with the surface velocity, temperature and 
concentration of the form  ܷ௪(ݔ, (ݐ = 1ݔܽ − ݐܿ ,   ௪ܶ(ݔ, (ݐ = ஶܶ + 1ݔܽ − ,ݔ)௪ܥ ,  ݐܿ (ݐ = ஶܥ + ௫ଵି௧                                 (7) 

where ܽ (stretching rate) and c are positive 
constants with ܿݐ < 1, ܿ  0. It is noticed that the 
stretching rate 

ଵି௧  is increases with time t since ܽ > 0. 
The following similarity transformations (2009) are 
introduced to simplify the mathematical analysis of 
the problem � = η = ට ఔ(ଵି௧) ,ݕ  ݑ = ௫ଵି௧ ݂ᇱ(η), ݒ =−ට ఔଵି௧  ݂(η)                                                                 (8) ߠ(η) = ்ି ಮ்்ೢ ି ಮ் ,  ߶(η) = ିಮೢିಮ.                             (9) 

By using the Rosseland approximation for radiation, 
the radiative heat flux ݍ is defined as ݍ = − ସఙ∗ଷ∗ డ்రడ௬ ,                                               (10) 

where ߪ∗ is the Stephan-Boltzman constant,ܭ∗ is 
the mean absorption coefficient. We assume that the 
temperature differences within the flow are such 

that the term ܶସ may be expressed as a linear 
function of temperature. This is accomplished by 
expanding ܶସ in a Taylor series about a free stream 
temperature ஶܶ as follows: ܶସ = ஶܶସ + 4 ஶܶଷ(ܶ − ஶܶ) +6 ஶܶଶ(ܶ − ஶܶ)ଶ +  (11)                                             ڮ

Neglecting higher-order terms (9) in the above Eq. 
(11) beyond the first degree in (ܶ − ஶܶ), we get  ܶସ ؆ 4 ஶܶଷܶ − 3 ஶܶସ .                               (12) 

Thus substituting Eq. (12) in Eq.(10), we get ݍ = − ଵ ಮ்యఙ∗ଷ∗ డ்డ௬.                 (13) 

The effect of thermophoresis is usually prescribed 
by means of an average velocity acquired by small 
particles to the gas velocity when exposed to a 
temperature gradient. In boundary layer flow, the 
temperature gradient in y-direction is very much 
larger than in the x-direction and therefore only the 
thermophoretic velocity in y-direction is 
considered. As a consequence, the thermophoretic 
velocity VT, which appears in Eq. (5), is expressed 
as    ்ܸ = − భఔೝ் డ்డ௬                (14) 

in which ݇ଵ is the thermophoretic coefficient and ܶ 
is the reference temperature. A thermophoretic 
parameter ߬ is given by the relation  ߬ = − భ(்ೢ ష ಮ்)      ೝ்                                                  (15) 

where the typical values of ߬ are 0.01, 0.1and 1.0 
corresponding to  approximate values of–k1(Tw - ஶܶ) 

equal to 3, 30, 300K for a reference temperature of 
T=298.15K. 

Using Eqs. (8),(9),(13) and (15), the governing 
equations Eqs. (2) – (6) takes the form ݂ᇱᇱᇱ + ݂݂ᇱᇱ − ݂ᇱమ − ߙ ቀ݂ᇱ + ଵଶ η ݂ᇱᇱቁ − ᇱ݂ ܯ −݂݇ᇱ = 0                                                                        (16) ቀ1 + ସଷ ቁ݊ܣ ᇱᇱߠ + ᇱߠ ݂ )ݎܲ − ݂ᇱߠ) − ߙ ݎܲ ቀߠ +ଵଶ η ߠᇱቁ + ଵ݂ᇱܣ) + (ߠ ଵܤ + ᇱᇱ߶ ݑܦ = 0              (17) ߶ᇱᇱ − ܵܿ (2 ݂ᇱ߶ −  ݂ ߶ᇱ) − ߙ  ܿܵ ቀ߶ + ଵଶ η ߶ᇱቁ ᇱᇱߠ ݎܵ ܿܵ+ − ᇱ߶ᇱߠ)߬ + (߶ᇱᇱߠ  = 0     (18)  

The boundary conditions take the form   ݂ = ௪݂,    ݂ᇱ = ߠ    ,1 = 1,    ߶ = η ݐܽ  1  = 0,  
(19)  ݂ᇱ = ߠ       ,0 = 0,       ߶ = η ݐܽ      ,0 ՜ ∞   (20) 

where Pr is the Prandtl number, An is the radiation 
parameter, ߙ is the unsteadiness parameter, M is the 
magnetic field parameter, k is the permeability 
parameter, Sr is the Soret parameter, Du is the 
Dufour parameter, ߬ is the thermophoresis 



P. S. Reddy and A. J. Chamkha/JAFM, Vol. 9, No. 5, pp. 2443-2455, 2016.  
 

2447 

parameter, Sc is the Schmidt number, ݂(0)  = ௪݂ 
with ௪݂ > 0  corresponds to suction and   ௪݂ < 0 
represents injection. 

Quantities of practical interest in this problem are 
the local skin friction coefficient Cf, the local 
Nusselt number Nux, and the local Sherwood 
number Shx, are defined as ܥ = ఛೢఘమೢ /ଶ , ௫ݑܰ = ௫ ೢ(்ೢ ି ಮ்),  ܵℎ௫ = ௫ ೢ(ೢିಮ). 
Here ߬௪,ݍ௪, and ܬ௪ are the wall shear stress, 
surface heat flux and the mass flux, respectively.  

Using (8) and (9), we obtain the dimensionless 
versions of these key design quantities:  

Cf =
ᇲᇲ()ோೣభమ  , Nux= −ߠᇱ(0)ܴ݁௫భమ , Shx = −߮ᇱ(0)ܴ݁௫భమ. 

Since the highly non-linear nature of ordinary 
differential Eqs. (16)–(18)together with boundary 
conditions (19)-(20), they cannot be solved 
analytically. So the variational finite-element 
method, Bhargava et al. (2009), Anwar Beg et 
al.(2008) and Rana. P et al.(2012) has been 
implemented. 

3. NUMERICAL METHOD OF 
SOLUTION 

3.1. The finite-element method 

The finite element method (FEM) is such a powerful 
method for solving ordinary differential equations and 
partial differential equations. The basic idea of this 
method is dividing the whole domain into smaller 
elements of finite dimensions called finite elements. 
This method is such a good numerical method in 
modern engineering analysis, and it can be applied for 
solving integral equations including heat transfer, fluid 
mechanics, chemical processing, electrical systems, 
and many other fields. The steps involved in the finite-
element are as follows. 

(i)  Finite-element discretization 

The whole domain is divided into a finite number of 
subdomains, which is called the discretization of the 
domain. Each subdomain is called an element. The 
collection of elements is called the finite-element 
mesh. 

(ii)  Generation of the element equations 

a. From the mesh, a typical element is isolated and 
the variational formulation of the given problem  

over the typical element is constructed. 

b. An approximate solution of the variational 
problem is assumed, and the element equations 
are  

made by substituting this solution in the above 
system. 

c. The element matrix, which is called stiffness 
matrix, is constructed by using the element  

interpolation functions. 

(iii)   Assembly of element equations 

The algebraic equations so obtained are assembled 
by imposing the interelement continuity conditions. 
This yields alarge number of algebraic equations 
known as the global finite-element model, which 
governs the whole domain. 

(iv) Imposition of boundary conditions 

The essential and natural boundary conditions are 
imposed on the assembled equations. 

(v)  Solution of assembled equations 

The assembled equations so obtained can be solved 
by any of the numerical techniques, namely, the 
Gauss eliminationmethod, LU decomposition 
method, etc. An important consideration is that of 
the shape functions which are employed 
toapproximate actual functions. 

For the solution of system non-linear ordinary 
differential Eqs. (16-18) together with boundary 
conditions (19-20), first we assume that ୢୢ = h                 (21) 

The Eqs. (16) to (18) then reduces to  ℎᇱᇱ + ݂ℎᇱ − ℎଶ − ߙ ൬ℎ + 12 η ℎᇱ൰ − ܯ) + ℎ(ܭ = 0 

(22)  ቀ1 + ସଷ ቁ݊ܣ ᇱᇱߠ + ᇱߠ ݂ )ݎܲ − ℎ ߠ) − ߙ ݎܲ ቀߠ +ଵଶ η ߠᇱቁ + ଵ ℎܣ) + (ߠ ଵܤ + ᇱᇱ߶ ݑܦ = 0               (23) ߶ᇱᇱ − ܵܿ (2 ℎ −  ݂ ߶ᇱ) − ߙ  ܿܵ ቀ߶ + ଵଶ η ߶ᇱቁ ᇱᇱߠ ݎܵ ܿܵ+ − ᇱ߶ᇱߠ)߬ + (߶ᇱᇱߠ  = 0                          (24) 

The boundary conditions take the form  ݂ = ௪݂,   ℎ = ߠ   ,1 = 1, ߶ = η ݐܽ   1  = 0,       (25)  ℎ = ߠ         ,0 = 0,         ߶ = η ݐܽ      ,0 = ∞ .      (26) 

It has been observed that for large values of  (>8), there is no remarkable change in the profiles, so, 
for computational purpose infinity has been taken as 
8. 

3.2. Variational Formulation 

The variational form associated with Eqs. (21) to 
(24) over a typical linear element (η, ηାଵ) is 
given by   ଵݓ ቀ ୢୢ − hቁ dη = 0శభ  (27)                ଶݓ ቀℎᇱᇱ + ݂ℎᇱ − ℎଶ − ߙ ቀℎ + ଵଶ η ℎᇱቁ − ܯ) +శభܭ) ℎቁ dη = 0                (28) 

න ଷݓ ൬൬1 + 43 ൰݊ܣ ᇱᇱߠ + ᇱߠ ݂ )ݎܲ − ℎ ߠ)శభ
 − Pr ߙ ൬ߠ + 12 η ߠᇱ൰+ ଵℎܣ) + (ߠଵܤ + ᇱᇱ൰߶ݑܦ dη = 0 

(29)  
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න ସݓ ቆ߶ᇱᇱ − ܵܿ (2 ℎ −  ݂ ߶ᇱ)శభ
 − ߙ  ܿܵ ൬߶ + 12 η ߶ᇱ൰+ −ᇱᇱߠ ݎܵ ܿܵ ߬൫ߠᇱ߶ᇱ + ᇱᇱ߶൯ቇߠ  dη = 0 

(30) 

where ݓଵ, ,ଶݓ  ସ are arbitrary testݓ  ଷ andݓ
functions and may be viewed as the variations in f, 
h, θ, and ߶, respectively. 

3.3. Finite- Element Formulation 

The finite-element model may be obtained from 
above equations by substituting finite-element 
approximations of the form ݂ = ∑ ݂߰ଷୀଵ  ,  ℎ = ∑ ℎ߰ଷୀଵ  ,θ = ∑ ߰ଷୀଵߠ  , ߶ = ∑ ߶߰ଷୀଵ                                                            (31) 

with ݓଵ = ଶݓ = ଷݓ = ସݓ = ߰,         (݅ = 1,2,3). 

where ߰ are the shape functions for a typical 

element (ߟ, ାଵ) and are defined as ߰ଵߟ = (శభାିଶ ) (శభି)(శభି)మ ,   ߰ଶ = ସ(ି)(శభି)(శభି)మ  ,                                  (32)   ߰ଷ = (శభାିଶ ) (ି)(శభି)మ , η ≤ η ≤ ηାଵ. 
The finite element model of the equations thus 
formed is given by 

ێێێۏ
[ଵଵܭ]ۍ [ଵଷܭ]      [ଵଶܭ] [ଶଵܭ][ଵସܭ] [ଶଷܭ][ଶଶܭ] [ଷଵܭ][ଶସܭ] [ଷଷܭ]    [ଷଶܭ] [ସଵܭ][ଷସܭ] [ସଷܭ]     [ସଶܭ] ۑۑۑے[ସସܭ]

ې ൦ℎ݂ߠ߶൪ = ێێێۏ   
ۑۑۑے{ସݎ}{ଷݎ}{ଶݎ}{ଵݎ}ۍ

ې
 

where [ܭ] and [ݎ] (m, n = 1, 2, 3, 4) are 

defined as,  ܭଵଵ =  ߰ డటೕడ dηశభ ଵଶܭ , =−  ߰߰ dηశభ ଵଷܭ, = ଵସܭ = ଶଵܭ   ,0 = ߰ ℎഥ ߰ dηశభ ,   

ଶଶܭ =   ቊ− డటడ డటೕడ − ߰ℎത߰ − ߙ  ቄ߰߰ +శభ
ଵଶ η߰ℎത߰ቅቋ dη −   ߰(ܯ + dηశభ߰(ܭ  , 

ଶଷܭ = ଶସܭ ,  0  = ଷଵܭ  , 0  = ݎܲ  ߰ߠ ഥ ߰dηశభ ଷଶܭ ,  ݎܲ−=  ߰߰dηశభ + ଵܣ  ߰߰dηశభ   ,  

ଷଷܭ = − ൬1 + 43 ൰݊ܣ න ߲߲߰η ߲߲߰η  dηశభ


 
+ ߙ ݎܲ න ߰(1 + 12 ηߠҧశభ

+  ଵ)߰ dηܤ

ଷସܭ = ݑܦ  డటడ డటೕడ  dηశభ . 

ସଵܭ = ܵܿ  ߰߶ ഥ ߰ dηశభ ସଶܭ  , =2 ܵܿ  ߰߰ dηశభ ସଷܭ  , ݎܵ ܿܵ=  డటడ డటೕడ  dη + Sc ߙ  ߰(1 +శభశభଵଶ η߶ത)߰ dη − τ  ߰߶ത డటೕడ  dηశభ −τ  డటడ డటೕడ  dηశభ ସସܭ         , =  డటడ డటೕడ  dηశభ .  

ଶݎ = ଶݎ , 0 = − ቀ߰ ௗటௗ ቁ
శభ

ଷݎ  , = − ቀ߰ ௗటௗ ቁ
శభ

  

ସݎ  , = − ቀ߰ ௗటௗ ቁ
శభ

 

where ݂ҧ = ∑ ݂ డటడଷୀଵ ℎത = ∑ ℎ డటడଷୀଵ  ,  

ҧߠ = ∑ ߠ డటడଷୀଵ ,  ߶ത = ∑ ߶ డటడଷୀଵ .  

After assembly of the element equations, we get the 
system of strongly non-linear equations and are solved 
using a robust iterative scheme. The system is 
linearized by incorporating the functions ݂ҧ, ℎത,  ,ҧ and߶ҧߠ
which are assumed to be known. After imposing the 
boundary conditions, we get the less number of non-
linear equations and are solved using Gauss 
elimination method by maintaining an accuracy of 
0.00001. The computer program of the algorithm was 
executed in Mathematica 10.0 software. 

4. RESULTS AND DISCUSSION 

Comprehensive numerical computations are 
conducted for different values of the parameters that 
describe the flow characteristics, and the results are 
illustrated graphically and in tabular form. Selected 
graphical profiles are presented in Figs. 2-19. The 
Comparison of the skin friction coefficient  ݂ᇱᇱ(0)  
for various values of αwith Dulal Pal (2011) is 
made and the results are shown in Table 1in the 
absence of the other parameters. The Nusselt 
number ܰݑ௫values for various values of Pr and α 
are also compared with those of Ishak. A et al. 
[2009), Dulal Pal (2011) and Eshetu Haile et al. 
(2014)in the absence of k, M, Sr, Du, ܣଵ, ܤଵ,Sc,fw,߬and are presented in Table 2. Thus, it is 
seen from Tables 1 and 2 that the numerical results 
are in close agreement with those published 
previously. 
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Table 1 Comparison of ࢌᇱᇱ() with previously published data for  k=0, M=0, Sr=0, Du=0, Sc=0, A1=0, 

B1=0, fw =0 and ࣎ =  ݂ᇱᇱ(0) 

α Dulal pal(2011) Present Study 

0.8 -1.261043 -1.261036 

1.2 -1.377724 -1.377658 

2.0 -1.587366 -1.587301 

 
Table 2 Comparison of −ࣂᇱ() with previously published data for k=0, M=0, Sr=0, Du=0, Sc=0, A1=0, 

B1=0, and ࣎ =  
Nux 

α ௪݂ Pr 
Ishak.A.et al. 

(2009) 
Dulal Pal 

(2011) 
Haile.E.et al. 

(2014) 
Present Study 

0.0 0.0 1.0 1.0000 1.0000 1.0004 1.0002 

0.0 0.0 3.0 1.9237 1.9236 1.9234 1.9235 

0.0 0.0 10.0 3.7207 3.7207 3.7205 3.7205 

0.0 0.0 100.0 12.2941 12.2940 12.2962 12.2948 
 

 

 
Fig. 2. Effect of M on Velocity profile. 

 

 
Fig. 3. Effect of M on temperature profile. 

 

The influence of magnetic field parameter (M) on 
the velocity, temperature and concentration profiles 
in the boundary layer is depicted in Figs.2 to 4. It is 
noticed that the momentum boundary layer 
thickness decreases with increasing values of M. 

This is because of the fact that, the presence of 
magnetic field in an electrically-conducting fluid 
produces a force called the Lorentz force which acts 
against the flow direction causing the depreciation 
Inthe velocity profiles (Fig. 2). We noticed from 
Figs. 3 and 4 that the temperature and concentration 
profiles are enhanced with increasing values of M. 
This is from the reality that, to overcome the drag 
force imposed by the Lorentz retardation, the fluid 
has to perform extra work and this supplementary 
work can be converted into thermal energy which 
increases the temperature and concentration of the 
fluid. 

Figures 5 - 7 depict the velocity (݂ᇱ), temperature 
(θ) and concentration (߮) distributions for different 
values of the suction parameter ( ௪݂).It can be seen 
that as the values of suction parameter ( ௪݂) increase 
the fluid velocity profiles decelerates in the 
boundary layer regime. This is due to the fact that 
suction takes away the warm fluid from  

 

 
Fig. 4. Effect of M on Concentration profile. 
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the surface of the sheet and thereby decreases the 
thickness of hydrodynamic boundary layer (Fig.5). 
It is observed that an increase in ( ௪݂) decreases the 
temperature profiles in the flow region. This is 
because of the fact that as the suction is increased, 
more warm fluid is taken away from the fluid 
region causing depreciation in the thermal boundary 
layer thickness (Fig.6). We notice from Fig. 7 that 
the concentration profiles decelerate with an 
increase in the suction parameter. This is because 
suction stabilizes the growth of the solutal boundary 
layer thickness. 
 

 
Fig. 5. Effect of ࢝ࢌ on Velocity profile. 

 

 
Fig. 6. Effect of ࢝ࢌ on Temperature profile. 

 
 

The influence of unsteadiness parameter (α) on the 
temperature and the concentration profiles is 
depicted in Figs. 8-9. It can be seen that the 
temperature profiles decelerate with an increase in 
the values of the unsteadiness parameter α. This is 
because of the usual fact that, motion is generated 
by the stretching of the sheet and the stretching 
sheet velocity and temperature are greater than the 
free stream velocity and temperature. As a result, 
the thermal boundary layer thickness decreases with 
the increase in the value of α as shown in Fig. 8. 

The concentration profiles also decreases in the 
flow region as shown in Fig. 9. It is also observed 
that the temperature profiles decrease smoothly in 
the absence of the unsteadiness parameter (α=0) 
whereas the temperature profiles continuously 
depreciates with the increasing values of 
unsteadiness parameter. This shows that the rate of 
cooling is much faster for higher values of the 
unsteadiness parameter and it takes longer time for 
cooling for steady flows. 

 

 
Fig. 7. Effect of ࢝ࢌon Concentration profile. 

 
Fig. 8. Effect of ࢻon Temperature profile. 

 

 
Fig. 9. Effect of ࢻ on Concentration profile. 
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Fig. 10. Effect of ࣎ on Temperature profile. 

 

The effects of the thermophoretic parameter߬ on the 
temperature and the concentration profiles are 
plotted in Figs. 10 and 11. It is seen from Fig.10 
that an increase in the value of߬ there exist a slight 
enhancement in the temperature profiles throughout 
the fluid regime. This is because of the fact that the 
particles near the hot surface create a 
thermophoretic force.Fig.11 exhibits the impact of ߬on the concentration profiles. It is noticed that the 
concentration profiles decrease with an increase in 
the thermophoretic parameter ߬. This is because the 
fluid moves from the hot surface to the cold surface 
and that the values of the thermophoretic parameter 
have been taken positive. From these two figures, 
we conclude that the imposition of thermophoretic 
particle deposition into the flow increases the 
thickness of thermal boundary layer and decreases 
the solutal boundary layer thickness. 

 

 
Fig. 11. Effect of ࣎ on concentration profile. 

 
The temperature and concentration profiles for 
different values of the space-dependent and 
temperature-dependent coefficients A1 and B1 for 
the heat source/sink are depicted in Figs.12 to15.It 
is observed that the temperature in the thermal 
boundary layer increases with the increase in A1and 
B1 (positive values), whereas the thermal boundary 
layer thickness decelerates with the decrease in the 

heat absorption parameters A1 and B1 (negative 
values). This is due to the fact that with increases in 
A1>0, B1>0(heat source), the boundary layer 
creates energy which causes a rise in the 
temperature profile, whereas, with decreases in A1< 
0, B1< 0(heat absorption), the boundary layer 
absorbs the energy so that the thermal boundary 
layer thickness decreases in the fluid regime as 
shown in Figs.12 and 14.The exact reverse trend is 
noticed on the concentration profiles with the space-
dependent and temperature-dependent coefficients 
A1 and B1 for both heat generation and heat 
absorption cases and this behavior is presented in 
Figs. 13 and 15. 

 

 
Fig. 12. Effect of  on Temperature profile. 

 

 
Fig. 13. Effect of  on Concentration profile. 
 

The combined influence of thermo-diffusion 
(Soret) and the diffusion-thermo (Dufour) effects 
on the temperature and the concentration profiles 
are plotted in Figs.16 and 17, respectively. The 
values of Sr and Du have been taken as Sr = 1.0, 
0.7,0.4,0.1 and Du = 0.1, 0.3, 0.5,0.7, i.e. the Soret 
parameter values decrease and the Dufour 
parameter values increase. It is seen from these 
figures that the temperature profiles increase, 
whereas the concentration profiles decelerate with 
the rise in Du and the fall in Sr. From the 
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definition, the Soret number can be defined as the 
effect of the temperature on the concentration and 
the Dufour number can be defined as the effect of 
the concentration on the temperature. This shows 
that diffusive species with lower Soret values 
decelerate the concentration profiles whereas the 
thermal species with higher Dufour values have 
the tendency of increasing the temperature 
profiles. It is worth noticing that both the heat and 
mass transfer are highly influenced by the changes 
in Sr and Du. 

 

 
Fig. 14. Effect of  on Temperature profile. 

 

Fig. 16. Effect of ࢛ࡰ ܌ܖ܉ ࢘ࡿ on Temperature 
profile. 

 
Figures. 18 and 19 present the effects of the thermal 
radiation parameter An on the temperature and the 
concentration distributions. It is observed form Fig. 
18 that as the values of An increase, the thickness of 
the thermal boundary layer also increases. This is 
due to the fact that imposition of An in the fluid 
flow implies increasing of the thermal radiation in 
the thermal boundary layer which results in an 

increase in the value of the temperature profile in 
the fluid regime. However, reverse trend is 
observed in the solutal boundary layer thickness 
with increasing values of An in the flow region and 
this is shown in Fig. 19. 

 

 
Fig. 18. Effect of An on Temperature profile. 

 
Fig. 15. Effect of B1 on Concentration profile. 

 

Fig. 17. Effect of ࢛ࡰ ܌ܖ܉ ࢘ࡿ on Concentration 
profile. 
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Table 3 The local Skin-friction, Nusselt number and Sherwood number for different values of the 
important parameters 

M ௪݂ A1 B1 Sr Du τ An ݂ᇱᇱ(0) −ߠᇱ(0) −߶ᇱ(0) 
0.1 
0.5 
1.0 
1.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 

0.5 
0.5 
0.5 
0.5 
0.1 
0.3 
0.5 
0.7 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 

-0.1 
-0.1 
-0.1 
-0.1 
-0.1 
-0.1 
-0.1 
-0.5 
-0.1 
 0.1 
 0.5 
-0.1 
-0.1 
-0.1 
-0.1 
-0.1 
-0.1 
-0.1 
-0.1 
-0.1 
-0.1 
-0.1 
-0.1 
-0.1 
-0.1 
-0.1 
-0.1 
-0.1 

-0.1 
-0.1 
-0.1 
-0.1 
-0.1 
-0.1 
-0.1 
-0.1 
-0.1 
-0.1 
-0.1 
-0.1 
-0.3 
-0.1 
 0.1 
 0.2 
-0.1 
-0.1 
-0.1 
-0.1 
-0.1 
-0.1 
-0.1 
-0.1 
-0.1 
-0.1 
-0.1 
-0.1 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
0.7 
0.4 
0.1 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.3 
0.5 
0.7 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 

0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.1 
0.3 
0.5 
0.7 
0.5 
0.5 
0.5 
0.5 

0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.3 
0.5 
0.7 

−1.5158744 −1.6666449 −1.8346139 −1.9860796 −1.4519989 −1.5557482 −1.6666449 −1.7845786 −1.3363316 −1.3257839 −1.3704027 −1.4023647 −1.1278748 −1.2578397 −1.6594641 −1.7868723 −1.2867381 −1.3188963 −1.3748052 −1.3549166 −1.3257839 −1.3203397 −1.2341730 −1.2120002 −1.2867381 −1.2693179 −1.245810 −1.2267640 

1.0954583 1.0769383 1.0581713 1.0427808 0.9558400 1.0142059 1.0769383 1.1440810 1.0638213 0.8488358 0.7413729 0.5802159 0.9273635 0.8488358 0.7619111 0.6631123 1.0967356 0.9541261 0.7670185 0.5721138 0.8488358 0.8052550 0.7661899 0.7309419 1.0967356 0.9772594 0.8866948 0.8153569 

1.4353078 1.4044462 1.3724033 1.3455601 1.2787791 1.3398008 1.4044462 1.4731732 1.0989064 1.2599294 1.3403629 1.4609154 1.2046987 1.2599294 1.3199523 1.3865907 1.0738634 1.3445090 1.5553249 1.6720642 1.2599294 1.4059782 1.5370934 1.6555676 1.0738634 1.1582161 1.2208495 1.2693241 
 

 

 
Fig. 19. Effect of An on Concentration profile. 

 
The variation of the local skin-friction 
coefficient ݂ᇱᇱ(0), local Nusselt number −ߠᇱ(0),and the local Sherwood number −߶ᇱ(0) for 
different values of the important parameters are 
presented inTable 3. It is evident that all these non-
dimensional rate coefficients decelerate with 
increasing values of the magnetic parameter M. 
Further, it is noted that the rates of the velocity 
depreciates, whereas the rates of the dimensionless 
heat transfer and rates of the dimensionless mass 
transfer enhance with increasing values of the 
suction ( ௪݂ > 0) parameter. It is observed from this 
table that the effects of the space dependent (A1) 
and the temperature-dependent (B1) parameters are 

similar on these non-dimensional rate coefficients. 
Moreover, the rates of non-dimensional velocity 
and heat transfer decrease whereas the rates of the 
non-dimensional mass transfer enhances for the 
values of both A1 and B1. The effect of the Soret 
parameter Sr together with the Dufour parameter 
Du on these non-dimensional rate coefficients is 
also shown in the table and it is observed that  ݂ᇱᇱ(0) and −ߠᇱ(0) decelerate, whereas −߶ᇱ(0) 
enhances in the flow region. The influence of 
thermophoretic parameter τ and thermal radiation 
parameter Anis similar on these non-dimensional 
rate coefficients. It can be noted that the local skin-
friction coefficient and the local Sherwood number 
increase whereas the Nusselt number decreases with 
increasing values of τ and An. 

5. CONCLUSION 

In this paper, the problem of unsteady boundary 
layer, heat and mass transfer flow of a viscous 
incompressible electrically-conducting fluid 
through porous medium over a stretching sheet 
subject to thermal radiation, magnetic field, heat 
source/sink, Soret effect, Dufour effect and 
thermophoresis effect has been analyzed. The 
governing highly non-linear partial differential 
equations together with the boundary conditions are 
transformed into non-linear ordinary differential 
equations using the similarity variables and these 
are solved with the help of the variational finite-
element method. The numerical results show that 

Pr 0.72, Sc 1.0, M 0.5,

B1 0.1, 0.5, A1 0.1,

fw 0.5, Du 0.1, Sr 1.0, 0.5,
k 0.1.

An 0.1, 0.3, 0.5, 0.7.
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the present values of the local skin-friction 
coefficient and the Nusselt number are in good 
agreement with previously published work. In the 
present analysis, the following conclusions have 
attained. 

(i)The velocity, temperature and the concentration 
profiles decrease with increases in the suction 
parameter, satisfying the fact that suction 
decelerates the momentum, thermal and solutal 
boundary layer thickness. 

(ii)Increasing the Lorentz force decreases the 
velocity of the fluid. 

(iii)The momentum, thermal and the concentration 
profiles decrease with increases in the unsteadiness 
parameter. 

(iv)The effect of the Soret number enhances the rate 
of heat transfer, whereas it decelerates the rate of 
mass transfer. 

(v)The Nusselt number decreases whereas the 
Sherwood number increases with increases in the 
values of the thermal radiation parameter. 

(vi)The effect of space-dependent and temperature-
dependent heat source/sink is same on both the 
Nusselt number and the Sherwood number. 
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