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Abstract
Purpose – The purpose of this paper is to examine the flow, heat transfer and entropy generation
characteristics for an inclined channel of two immiscible micropolar fluids.
Design/methodology/approach – The flow region consists of two zones, the flow of the heavier fluid
taking place in the lower zone. The flow is assumed to be governed by Eringen’s micropolar fluid flow
equation. The resulting governing equations are then solved using the homotopy analysis method.
Findings – The following findings are concluded: first, the entropy generation rate is more near the
plates in both the zones as compared to that of the interface. This indicates that the friction due to surface
on the fluids increases entropy generation rate. Second, the entropy generation rate is more near the plate
in Zone I than that of Zone II. This may be due to the fact that the fluid in Zone I is more viscous. This
indicates the more the viscosity of the fluid is, the more the entropy generation. Third, Bejan number is
the maximum at the interface of the fluids. This indicates that the amount of exergy (available energy) is
maximum and irreversibility is minimized at the interface between the fluids. Fourth, as micropolarity
increases, entropy generation rate near the plates decreases and irreversibility decreases. This indicates
an important industrial application for micropolar fluids to use them as a good lubricant.
Originality/value – The problem is original as no work has been reported on entropy generation in
an inclined channel with two immiscible micropolar fluids.
Keywords HAM, Bejan number, Entropy generation number, Immiscible fluids, Micropolar fluid
Paper type Research paper

Nomenclature
Be Bejan number
Br Brinkman number
Br/Ω viscous dissipation parameter
D deformation tensor (T−1)
dij components of the strain
E specific internal energy ( J)
Ec Eckert number
f body forces per unit mass (LT−2)
2h height of the free channel (m), (L)

h heat flux (Wm−2)
k1, k2 thermal conductivity of the fluid

in Zones I, II, W/mK
‘ body couple per unit mass

(L5 T−1)
mij couple stress tensor (N L−1)
nη couple stress coefficients ratio
nk thermal conductivity ratio
nμ viscosity ratio
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nρ density ratio
Nfi entropy generation due to

viscous dissipation
(kg m2 s−2 K−1)

Nsi dimensionless total entropy
generation number

Nyi entropy generation due to
transverse conduction

Nu Nusselt number
P pressure, (N m−2), (ML−1 T−2)
Pr Prandtl number
q velocity vector (ms−1), (L T−1)
Re Reynolds number
s1, s2 couple stress parameters
(Si)G entropy generation rate (Wm−3 K−1)
(S1)G, C characteristic entropy

transfer rate
T1, T2 temperatures, (K)
u dimensionless velocity in

X-direction
X, Y space co-ordinates (m), (L)

Greek symbols
α, β, γ gyro-viscosity coefficients (M L4)
δij Kronecker delta
ΔT temperature difference (TII−TI), (K)
τij stress tensor (N m−2), (M L T−2)
εijk Levi-Civita symbol or

permutation symbol
λ, μ, κ viscosity coefficients

(Kg m−1 s−1), (ML−1 T−1)
η, η′ couple stress viscosity coefficients
n micro-rotation (T−1)
Ω dimensionless temperature difference
Φ dissipation function (L2 T−3)
ϕ irreversibility distribution ratio
ρ density (Kg m−3), (M L−3)
θ1, θ2 non-dimensional temperatures (K)

Subscripts
1 fluid in Zone I
2 fluid in Zone II

1. Introduction
In recent years, the analysis of heat transfer has been attracting more and more
attention of researchers because heat transfer improvement is very important for many
industrial applications and the reduction of energy consumption. The energy-related
engineering systems are designed and their performance is evaluated primarily by
using the energy balance deduced from the first law of thermodynamics. Engineers and
scientists have been traditionally applying the first law of thermodynamics to calculate
the enthalpy balances for more than a century to quantify the loss of efficiency in a
process due to the loss of energy. However, in recent years the second law analysis,
hereinafter called the exergy analysis of available energy analysis, of energy systems
has more and more drawn the interest of engineers and the scientific community. The
application of exergy analysis in engineering systems is very useful because it provides
quantitative information about irreversibilities and exergy losses in the system. In this
way, the thermodynamic efficiency can be quantified and poor efficiency areas can be
identified, so that systems can be designed and operated more efficiently. The exergy
concept has gained considerable interest in the thermodynamic analysis of thermal
processes and plant systems since it has been seen that the first law analysis has been
insufficient from an energy performance stand point. Therefore the use of the exergy
analysis of thermodynamic systems has become an essential tool for system design and
thermal conduction and convection. The exergy analysis is one of the best tools for
improving the performance of engineering processes involving heat transfer. It examines
the irreversibility due to fluid flow and heat transfer in terms of the entropy generation
rate. The second law of thermodynamics provides a general and unique way of
optimizing the design of thermal-fluid devices by minimizing the sum of thermal and
frictional entropy generation rates. A set of optimal operating and design conditions is
obtained that minimizes the irreversibility’s in the system. Accurate estimation of the
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entropy generation plays an important role in the design and development of thermo-
fluid components such as heat exchangers, turbines, pipe networks, pumps, energy
storage systems and electronic cooling devices. Bejan (1982, 1996) focussed on the
different effective factors behind the entropy generation in thermal systems, where
destruction of available work of a system occurs during the generation of entropy. Bejan
(1979) presented the second law aspect of heat transfer using various forced convection
problems. He established the concept of entropy generation number, irreversibility
distribution ratio. Later on, many investigators are interested to determine the entropy
generation and Bejan profiles for different geometric arrangements, flow situations and
thermal boundary conditions. Several works on entropy generation minimization have
appeared in the open literature (Baytas, 2000; Havzali et al., 2008).

The flow and heat transfer of immiscible fluids in inclined channels are of special
importance in the petroleum extraction and transport problems. The reservoir rock of
oil field contains many immiscible fluids in its pores. A portion of the pores contains
water and the rest contains oil or gases or both. The immiscible flows in crude oil
transport were studied experimentally by Bakhtiyarov and Siginer (1997). Chamkha
(2000) reported analytical solutions for flow of two immiscible fluids in porous and
non-porous parallel-plate channels. Later on, he examined the oscillatory flow and heat
transfer in two immiscible viscous fluids analytically (Chamkha, 2004). The inclined
channel flow with heat transfer has attracted the attention of many researchers due to
its numerous applications in thermal engineering and industries. Starting from
petroleum drilling equipment to various industrial exchanger systems, this type of
geometry can be observed. Malashetty and Umavathi (1997) investigated MHD
two-phase flow and heat transfer in an inclined channel. In another paper, Malashetty
et al. (2004) have studied the flow and heat transfer in an inclined channel containing
fluid and porous layers. In recent years, the fluid flow and entropy generation in two
immiscible fluids in an inclined/horizontal channel has received considerable attention
by researchers. Komurgoz et al. (2010) studied thermal analysis for an inclined channel
containing porous-fluid layers by using the differential transform method. Kiwan and
Khodier (2011) discussed natural convection heat transfer in an open-ended inclined
channel-partially filled with porous media. Other related work on various aspects of the
problem under consideration can be found in Umavathi et al. (2005a, b, c, d, 2006, 2008,
2009a, b, 2010, 2012, 2014) and Kumar et al. (2010).

Many significant fluids which exhibit couple stress effects do not obey Newtonian
law. Such fluids are called micropolar fluids and the constitutive equations of these
fluids were proposed by Eringen (1966, 2001). Not only does a micropolar fluid sustain
body forces and the usual (Cauchy) stress tensor as simple Newtonian fluids do, but it
also sustains body couples and the couple stress tensor; furthermore, the stress tensor
is non-symmetric in a micropolar fluid. The additional effects arise from the presence of
microscopic aciculate elements in a micropolar fluid-whereby micropolar-fluid motion
has six degrees of freedom, three more than of a simple Newtonian fluid-because the
length scale of motion is comparable to the length scale of the aciculate elements.
Micropolar fluids are known to occur in nature and are also of scientific importance.
Typically, a micropolar fluid is a suspension of rigid or semi-rigid particles that cannot
only translate but also rotate about axes passing through their centroids. Blood has
often been modeled as a micropolar fluid (Turk et al., 1973; Misra and Ghosh, 2001),
because it contains platelets, cells and other particles. Modeling granular flows as
micropolar fluids, Hayakawa (2000) showed that the analytical solutions of certain
boundary-value problems are in correlation with the relevant experimental results.
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We can expect rigid-rod epoxies to be micropolar fluids as well, because their aciculate
molecules exhibit rotation about their centroidal axes (Giamberini et al., 1997; Su et al.,
2000). Liquid crystals and colloidal suspensions are also cited as examples of
micropolar fluids (Eringen, 2001). For experimental determination of parameters
of micropolar fluids one can refer to Migun (1981) and Kolpashchikov et al. (1983).

Motivated by the aforementioned work, in this paper, we extend the previous
investigations to examine the entropy generation characteristics for an inclined channel
of two immiscible micropolar fluids. The homotopy analysis method (HAM) is
employed to solve the governing non-linear equations. The behavior of emerging flow
parameters on the velocity, micro-rotation, temperature, entropy generation number
and Bejan number is studied.

2. Mathematical formulation and governing equations
Consider the flow of two immiscible micropolar fluids between two inclined parallel
plates distance 2h apart, extending in the axial direction. As shown in Figure 1,
a coordinate system may be chosen with the origin at the center of the channel. X and Y
are taken as the coordinate axes parallel and perpendicular to the channel plates,
respectively. The distance 2h between the plates is much smaller than the length of the
channel so that the flow at any point in the X-direction is the same. Fluid flow is
generated due to a constant pressure gradient which acts at the mouth of the channel.
The fluid in the lower zone (viscosity μ1, density ρ1 and thermal conductivity k1)
occupies the region (−h⩽Y⩽ 0) comprising the lower half of the channel and this
region will be referred to as Zone I. The fluid in the upper zone (viscosity μ2, density
ρ2o ( ρ1) and thermal conductivity k2) is assumed to occupy the upper half of the
channel (i.e. (0⩽Y⩽ h)), and this region is called Zone II. The two walls of the channel
are held at different temperatures TI and TII (with TIoTII) and are inclined, making an
angle φ with the horizontal. The fluid properties are assumed to be constant except for
density variations in the buoyancy force term. The equations for the flow with
buoyancy effect due to natural convection and energy in Zones I and II (i.e. −h⩽Y⩽ h)

T=T
II i.e., θ

2 =1
h

dp
dx

O

Y

X

T=T
I i.e., θ

1 =0

g Cos ϕ

g Sin ϕ
U=0

 i.e., u
2 =0

U=0
 i.e., u

1 =0

Zone - ll

Zone - l

ϕ

ϕ

 –h

Figure 1.
The coordinate
system and
the geometry of
the channel
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are assumed to be governed by micropolar fluid flow equations as given by Eringen
(1966, 2001):

@r
@t

þr � rqð Þ ¼ 0 (1)

r
dq
dt

¼ rf�rPþkr � n� mþkð Þr � r � qþ lþ2mþkð Þr r � qð Þþrg (2)

rj
dn
dt

¼ r‘�2knþkr � q�gr � r � nþ aþbþgð Þr r � nð Þ (3)

r
dE
dt

¼ �P r � qð ÞþrF� r � h� �
(4)

where:

rF ¼ l r � qð Þ2þ2m D : Dð Þþ4k
1
2
r � q�n

� �2

þa r � nð Þ2þg rn : rnð Þþb rn : rnð ÞT
� �

where the vectors q, n, f and ‘ are the velocity, micro-rotation, body force per unit mass
and body couple per unit mass, respectively. P is the fluid pressure at any point. The
scalar quantities ρ and j are, respectively, the density and gyration coefficient and are
assumed to be constants. The material constants (λ, μ, κ) are viscosity coefficients and
(α, β, γ) are gyro-viscosity coefficients. These confirm to the inequalities, κ⩾ 0;
2μ+ κ⩾ 0; 3λ+2μ+ κ ⩾ 0, γ⩾ 0; |β|⩽ γ; 3α+ β+ γ⩾ 0. g is the acceleration due to
gravity. In the energy equation Φ is the dissipation function of mechanical energy per
unit mass, D denotes the deformation tensor, i.e., D ¼ 1=2

� �
qi; jþqj;i
� �

, E is the specific
internal energy and h ¼ �k rT is the heat flux, where k is the thermal conductivity.

Herein the velocity vector q and micro-rotation vector n are taken in the form
q ¼ U Yð Þ; 0; 0ð Þ, n ¼ 0; 0;C Yð Þð Þ.

q ¼ ðU ðY Þ; 0; 0Þ satisfies the continuity Equation (1) and the governing fluid flow
(neglecting body forces (except gravitational force) and body couples) and an energy
equation takes the following form:

mþkð Þd
2U

dY 2þk
dC
dY

�dP
dX

þrgb T�Twð Þ ¼ 0 (5)

g
d2C
dY 2�k

dU
dY

�2kC ¼ 0 (6)

m
dU
dY

� �2

þk
dU
dY

þ2C
� �2

þb
dC
dY

� �2
" #

þk
d2T

dY 2 ¼ 0 (7)

The following dimensionless variables are used to obtain the dimensionless form of the
governing equations and the boundary conditions: x ¼ ðX=hÞ, y ¼ ðY=hÞ,
u ¼ ðU=UoÞ, p ¼ ðP=ðr1U 2

oÞÞ, C ¼ ððCUoÞ=hÞ and y ¼ ðT�TI Þ=ðTII�TI Þ where Uo
is the maximum velocity of the fluid in the channel.
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Then, the Equations (5)-(7), in dimensionless form, in the corresponding zones are
presented as follows.

Zone I: (−1⩽ y⩽ 0)
The governing equations in Zone I are:

d2u1
dy2

þc1
dC1
dy

þGr
Re

1�c1ð Þy1Sinj�Re
dp
dx

1�c1ð Þ ¼ 0 (8)

d2C1
dy2

�s1
du1
dy

�2s1C1 ¼ 0 (9)

d2y1
dy2

þBr
du1
dy

� �2

þ c1
1�c1

� �
du1
dy

þ2C1
� �2

þd1
dC1
dy

� �2
" #

¼ 0 (10)

Zone II: (0⩽ y⩽ 1)
The governing equations in Zone II are:

d2u2
dy2

þc2
dC2
dy

þGr
Re

nb
nm

1�c2ð Þ y2 Sinj� 1
nm

Re
dp
dx

1�c2ð Þ ¼ 0 (11)

d2C2
dy2

�s2
du2
dy

�2s2C2 ¼ 0 (12)

d2y2
dy2

þBr
nk

nm
du2
dy

� �2

þ c2
1�c2

� �
du2
dy

þ2C2
� �2

" #
þnbd1

dC2
dy

� �2
" #

¼ 0 (13)

where Re ¼ ðr1UohÞ=m1 is the Reynolds number; ci ¼ ki=ðkiþmiÞ (0⩽ cio1), the
coupling number or micropolarity parameter; si ¼ ðkih2Þ=gi , the couple stress
parameter; nm ¼ m2=m1, the viscosity ratio; Br ¼ Ec:Pr, the Brinkman number;
Ec ¼ U 2

o=ðcp1 ðTII�TI ÞÞ, the Eckert number; Pr ¼ ðm1cp1 Þ=k1, the Prandtl number;
Gr ¼ ðr21 g b1 h3 ðTII�TI ÞÞ=m21, the Grashof number; nk ¼ k2=k1, the thermal
conductivity ratio; nb ¼ b2=b1, the thermal expansion coefficient ratio; nb ¼ b2=b1, the
couple stress coefficient ratio; and d1 ¼ b1=ðm1h2Þ (i¼ 1, 2).

2.1 Boundary and interface conditions
A characteristic feature of a two-layer flow problem is the coupling across liquid-liquid
interfaces. The liquid layers are mechanically coupled via transfer of momentum across
the interfaces. Transfer of momentum results from the continuity of tangential velocity
and a stress balance across the interface. To determine the velocity and micro-rotation
components u1(y), C1(y), u2(y) and C2(y) in Zones I and II from (8) to (13) described
above, we adopt the following boundary and interface conditions:

Zone I is constituted by the fixed lower plate given by y¼−1 and a fluid-fluid
interface defined by y¼ 0. Zone II is constituted by the fluid interface given by y¼ 0
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and the fixed upper plate given by y¼ 1. In view of the no-slip condition on the static
boundaries, we have to prescribe velocity as:

u1ð yÞ ¼ 0 on y ¼ �1; u2 yð Þ ¼ 0 on y ¼ 1 (14)

which represent the no-slip condition.
The micro-rotation vector on the boundary¼ angular velocity of the fluid on the

boundary, i.e., Cwall ¼ 1=2
� � r � qwallð Þ. A more general condition is taken as

Cwall ¼ n r � qwallð Þ where 0⩽ n⩽ 1 (refer Lukaszewicz, 1999, p. 31). This value of n
indicates the concentration of micropolarity or interaction of fluid particles with the
boundary. The case n¼ 0 indicates C¼ 0 at the plates. It represents the flow of
concentrated particles in which the microelements closed to the wall surface are unable
to rotate ( Jena and Mathur, 1981). This case is also known as strong concentration of
microelements. Authors Rees and Bossom (1996) and Bhattacharyya et al. (2012) have
used this condition. The micro-rotation vanishes on the static boundaries:

C1 yð Þ ¼ 0 on y ¼ �1; C2 yð Þ ¼ 0 on y ¼ 1 (15)

At the fluid-fluid interface y¼ 0, we assume that the velocity, micro-rotation, shear
stress and couple stress components are continuous. This implies:

u1 0
�ð Þ ¼ u2 0þ� �

; C1 0�ð Þ ¼ C2 0þ� �
;

txy1 0�ð Þ ¼ txy2
�� �� 0þ� �

and Mxy1 0�ð Þ ¼ nb Mxy2
�� �� 0þ� �

(16)

The last two conditions of (16) give us:

txy1 0�ð Þ ¼ txy2
�� �� 0þ� �) @u1

@y 9 0
�ð Þþ2c1C19 0�ð Þ

h i
¼ nm 1�c1

1�c2

� �
@u2
@y 9 0þ� �þ2c2 C29 0þ� �h i

;

Mxy1 0�ð Þ ¼ Mxy2
�� �� 0þ� �) @C1

@y
9 0�ð Þ ¼ nb

@C2
@y

9 0þ� �
: (17)

Also to determine the temperature distributions θ1( y) and θ2(y), in the zones I and II
described above, we adopt the following boundary and interface conditions:

(1) at the lower and upper plate boundaries the temperatures are, respectively:

y1 ¼ 0 at y ¼ �1 and y2 ¼ 1 at y ¼ 1 (18)

(2) at the fluid interface temperature (θ) and heat flux h
� �

are continuous:

y1 ¼ y2 and
dy1
dy

¼ nk
dy2
dy

at y ¼ 0 (19)

The solutions for u1, C1, θ1, u2, C2 and θ2 in (8)-(13) under the conditions (14)-(19) are
solved by HAM.

3. The HAM solution of the problem
One of the powerful analytical techniques, namely, the HAM, has attracted special
attention of researchers as it is both flexible in applying and gives sufficiently accurate
results with modest effort. The method is based upon the introduction of a homotopy
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parameter q which takes the values from 0 to 1. When q¼ 0, the problem under study
takes a simple form which admits a closed form analytical solution for an initial guess
satisfying boundary conditions. As q is increased and finally takes the value one, the
exact solution to the original problem is recovered. The nice feature in this method is
that it is being done entirely analytically. The HAM has been introduced and refined by
Liao (1992) who has enunciated a clear treatment of the method in his classical work
(Liao, 2003). The HAM relies on two other auxiliary quantities, a convergence
controlling parameter h and a function, H the choice of which are to be chosen to bring
out an optimum solution. HAM has been applied to a wide variety of problems in
different areas of science and technology.

The homotopy deformation equations for velocity u, micro-rotation C and
temperature θ for both the zones are given by:

1�qð ÞL ui y; qð Þ�ui;o yð Þ	 
 ¼ qhu N 1 ui y; qð Þ½ �; i ¼ 1; 2 (20)

1�qð ÞL Ci;o y; qð Þ�Co yð Þ	 
 ¼ qhC N 2 Ci y; qð Þ½ �; i ¼ 1; 2 (21)

1�qð ÞL yi;o y; qð Þ�yo yð Þ	 
 ¼ qhy N 3 yi y; qð Þ½ �; i ¼ 1; 2 (22)

where q∈ [0,1] is the embedding homotopy parameter.
The auxiliary linear operator is chosen as:

L ¼ d2

dy2
(23)

and non-linear differential operatorsN1,N2 andN3 are expressions on LHS of equations
for u, C and θ in (8)-(13).

The initial approximations of u(y), C( y) and θ( y) are chosen as u1,0, C1,0, θ1,0 for Zone
I and u2,0, C2,0, θ2,0 for Zone II such that L(u)¼L(C)¼L(θ) and satisfy the given
boundary conditions (14)-(19). Hence these initial solutions are given by:

u1 y; 0ð Þ ¼ u1;0 yð Þ ¼ 0; C1 y; 0ð Þ ¼ C1;0 yð Þ ¼ 0; y1 y; 0ð Þ ¼ y1;0 yð Þ ¼ nk yþ1ð Þ
1þnk

;

u2 y; 0ð Þ ¼ u2;0 yð Þ ¼ 0; C2 y; 0ð Þ ¼ C2;0 yð Þ ¼ 0; and y2 y; 0ð Þ ¼ y2;0 yð Þ ¼ yþnk
1þnk

(24)

The auxiliary parameters hu, hC and hθ are assumed to be so selected that
Equations (20)-(22) have solution at each point q∈ [0,1]. With the help of Taylors series
in q, u(y;q), C(y; q), θ(y; q) can be expressed as:

ui y; qð Þ ¼
X1
m¼0

ui;m yð Þqm; i ¼ 1; 2 (25)

Ci y; qð Þ ¼
X1
m¼0

Ci;m yð Þqm; i ¼ 1; 2 (26)
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yi y; qð Þ ¼
X1
m¼0

yi;m yð Þqm; i ¼ 1; 2 (27)

When q¼ 1, Equations (20)-(22) are same as original Equations (8)-(13), respectively,
therefore at q¼ 1 we get the exact solutions:

u1 y; 1ð Þ ¼ u1 yð Þ; C1 y; 1ð Þ ¼ C1 yð Þ; y1 y; 1ð Þ ¼ y1 yð Þ;

u2 y; 1ð Þ ¼ u2 yð Þ; C2 y; 1ð Þ ¼ C2 yð Þ; y2 y; 1ð Þ ¼ y2 yð Þ (28)

Therefore as q takes from 0 to 1, the solution u1( y;q) varies from initial guess u1,0(y) to the
final (exact) solution u1(y). (This is similar for C1(y) ,θ1(y), u2(y), C2(y), θ2(y)). Later, themth-
order deformation equations are obtained by substituting (25)-(27) in Equations (20)-(22)
and comparing the coefficient of qm on both sides:

L ui;m�Ymui;m�1 yð Þ	 
 ¼ hu R
u
i;m yð Þ (29)

L Ci;m�YmCi;m�1 yð Þ	 
 ¼ hC RC
i;m yð Þ (30)

L yi;m�Ymyi;m�1 yð Þ	 
 ¼ hy R
y
i;m yð Þ (31)

with the homogeneous boundary conditions of:

u1;m �1ð Þ ¼ 0; u1;m 1ð Þ ¼ 0 u1;m 0�ð Þ ¼ u2;m 0þ� �
;

@u1
@y

0�ð Þþ2c1 C1
�� �� 0�ð Þ

� �
¼ nm

1�c1
1�c2

� �
@u2
@y

9 0þ� �þ2c2 C29 0þ� �� �
;

C1;m �1ð Þ ¼ 0; C1;m 1ð Þ ¼ 0; C1;m 0�ð Þ ¼ C2;m 0þ� �
;

dC1;m 0�ð Þ
dy

¼ nb
C2;m 0þ� �

dy

y1;m �1ð Þ ¼ 0; y1;m 1ð Þ ¼ 0; y1;m 0�ð Þ ¼ y2;m 0þ� �
;

dy1;m 0�ð Þ
dy

¼ nk
dy2;m 0þ� �

dy
(32)

where:

Ru
1;m yð Þ ¼ d2u1;m�1

dy2
þc1

dC1;m�1

dy
þGr
Re

1�c1ð Þy1;m�1Sinj� 1�c1ð ÞRe dp
dx

(33)

RC
1;m yð Þ ¼ d2C1;m�1

dy2
�s1

du1;m�1

dy
�2s1 C1;m�1 (34)

1035

Analysis of
entropy

generation

D
ow

nl
oa

de
d 

by
 E

K
B

 D
at

a 
C

en
te

r 
A

t 0
5:

23
 1

7 
O

ct
ob

er
 2

01
6 

(P
T

)



Ry
1;m yð Þ ¼ d2y1;m�1

dy2
þBr

Xm�1

n¼0

du1;n
dy

du1; m�1ð Þ�n

dy

� �""

þ c1
1�c1

� � Xm�1

n¼0

du1;n
dy

þ2C1;n
� �

du1;ðm�1Þ�n

dy
þ2C1;ðm�1Þ�n

� � !#

þd1
Xm�1

n¼0

dC1;n
dy

dC1;ðm�1Þ�n

dy

� �#
(35)

Ru
2;m yð Þ ¼ d2u2;m�1

dy2
þc2

dC2;m�1

dy
þGr
Re

nb
nm

1�c2ð Þy2;m�1Sinj�
1
nm
Re

dp
dx

(36)

RC
2;m yð Þ ¼ d2C2;m�1

dy2
�s2

du2;m�1

dy
�2s2 C2;m�1 (37)

Ry
2;m yð Þ ¼ d2y2;m�1

dy2
þBr
nk

nm
	 Xm�1

n¼0

du2;n
dy

du2;ðm�1Þ�n

dy

� �"

þ c2
1�c2

� � Xm�1

n¼0

du2;n
dy

þ2C2;n
� �

du2;ðm�1Þ�n

dy
þ2C2;ðm�1Þ�n

� � !#

þnb d1
Xm�1

n¼0

dC2;n
dy

dC2;ðm�1Þ�n

dy

� �#
(38)

for m being integer Ym¼ 0, for m⩽ 1 and Ym¼ 1, for mW1.
The mth-order derivatives for u(y;q), C(y; q), θ (y; q) are defined as

ui;m yÞ ¼ ð1=m!Þ ðð@muiðy; qÞÞ=ð@qmÞÞ
�

, Ci;m yÞ ¼ ð1=m!Þ ðð@mCi y; qÞÞ=ð@qmÞÞ��
, yi;m

yÞ ¼ ð1=m!
� � ðð@myiðy; qÞÞ=ð@qmÞÞ, i¼ 1,2.

Intrinsic to HAM is the assumption that the auxiliary linear operator (L) auxiliary
parameter (h), and initial guess are chosen so that the above Taylor’s series expansions
are convergent at q¼ 1(Misra and Ghosh, 2001). The effects of pertinent parameters on
the flow of two immiscible incompressible micropolar fluids can be discussed from the
exact solutions (25)-(27).

Heat transfer coefficient at the walls is given by Fourier’s law h ¼ �krT . In
non-dimensional form this represents Nusselt number Nu ¼ �ðdy=dy��y¼7 1. This is
studied only at the walls of the channel.

4. Entropy generation analysis
4.1 The volumetric entropy generation
The non-equilibrium conditions due to the exchange of momentum and energy, within
the fluid-fluid medium and at the solid boundaries, cause a continuous entropy
generation in the flow field of the channel. This entropy generation is due to the
irreversible nature of heat transfer and viscosity effects, within the fluid and at the
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solid boundaries. From the known temperature and velocity fields, volumetric rate of
entropy generation for incompressible micropolar fluid is given as:

ðSiÞG ¼ Sið ÞG;heat transferþ Sið ÞG;viscous dissipation ¼
k

T2
o

@T
@Y

� �2

þ 1
To

F

where Φ is the viscous dissipation function.
For the present study, the volumetric rate of entropy generation reduces to:

Sið ÞG ¼ ki
T2

o

@Ti

@Y

� �2

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
X 0

þ mi
To

@Ui

@Y

� �2

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
X 0

þ ki
To

@Ui

@Y
þ2Ci

� �2

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
X 0

þ bi
To

@Ci

@Y

� �2

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
X 0

(39)

where the value of i can be either 1 or 2 that represent fluid in Zone I and fluid in
Zone II, respectively. Entropy generation profiles are constructed using Equation (39)
when the velocity, micro-rotation and temperature fields are known in the medium.
On the right hand side of the above equation the first term represents the entropy
generation rate due to heat conduction and the remaining three terms represent the
viscous dissipation function, Φ for an incompressible micropolar fluid.

4.2 The characteristic entropy generation rate
The characteristic entropy generation rate SG,C is defined as:

SG;C ¼ h
� �2
k1T

2
o

" #
¼ k1 DTð Þ2

h2T2
o

" #
(40)

In the above equation, h is the heat flux in Zone I, To is the average, characteristic,
absolute reference temperature of the medium, ΔT¼TII−TI and h is the half of
transverse distance of the channel.

4.3 The entropy generation number
According to Bejan (1979), the dimensionless form of entropy generation is the entropy
generation number Ns and which is, by definition, equal to the ratio of actual
generation rate to a characteristic entropy transfer rate. The entropy generation
number for each fluid with dimensionless variables is given by:

Ns1 ¼
S1ð ÞG
SG;C

¼ dy1
dy

� �2

þBr
O

du1
dy

� �2

þc1
du1
dy

þ2C1
� �2

þd1
dC1
dy

� �2
" #

(41)

Ns2 ¼
S2ð ÞG
SG;C

¼ nk
dy2
dy

� �2

þBr
O

nm
du2
dy

� �2

þc2
du2
dy

þ2C2
� �2

 !
þd1nb

dC2
dy

� �2
" #

(42)

where Br ¼ ððm1U 2
oÞ=k1DTÞ is the Brinkman number, which determines the

importance of viscous dissipation because of the fluid frictions relative to the
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conduction heat flow resulting from the impressed temperature difference and
O ¼ DT=To

� �
is the dimensionless temperature difference.

It is desirable to consider the Ec and Pr in a group that is called the Brinkman
number Br ¼ Ec :PrÞð for evaluating the relative importance of the energy due to
viscous dissipation to the energy because of heat conduction. It was reported that Br is
much less than unity for many engineering processes (Bejan, 1979).

4.4 The viscous dissipation parameter
The viscous dissipation parameter is an important dimensionless number for the
irreversibility analysis. It determines the relative importance of the viscous effects for
the entropy generation and it is equal to the ratio of the Brinkman number to the
dimensionless temperature difference, i.e., (Br/Ω).

4.5 Fluid friction vs heat transfer irreversibility
Entropy generation number (Ns) is good for generating entropy generation profiles but
fails to give any idea about the relative importance of fluid friction and heat transfer
effects. Two alternate parameters, irreversibility distribution ratio (ϕ) and Bejan
number (Be), are introduced for this purpose and they are achieving increasing
popularity among researchers studying the second law.

4.5.1 The irreversibility ratio. The idea of irreversibility distribution ratio can
enhance the understanding of the irreversibilities associated with the heat transfer and
the fluid friction. It is defined as the ratio of entropy generation due to fluid frictions
(Nf ) to heat transfer in the transverse direction (Ny), i.e.:

f ¼ SG;fluid friction

SG;heat transfer
¼ Nf

Ny

� �
(43)

Here ϕ can be interpreted as follows: If 0⩽ϕo1, then - indicates that heat transfer
irreversibility dominates and if ϕW1 the fluid friction dominates. For the case of
ϕ¼ 1, both the heat transfer and fluid friction have the same contribution to
entropy generation.

4.5.2 The Bejan number. An alternative irreversibility distribution parameter
(Paoletti et al., 1989), called the Bejan number Be, was as the ratio of entropy generation
due to heat transfer to the total entropy generation, is expressed as:

Be ¼ Ny
Ns

¼ Ny
NyþNf

¼ 1
1þf

(44)

This is employed to understand the entropy generation mechanisms. The value of
Be→ 1 indicates that the heat transfer irreversibility dominates over fluid friction, and
this corresponds to the case of ϕ→ 0. On the other hand, Be→ 0 indicates that the
irreversibility due to fluid friction dominates over the irreversibility due to the heat
transfer. This corresponds to ϕ→∞. It is obvious that Be¼ 0.5 is the case in which the
irreversibility due to heat transfer is equal to fluid friction contributions in the entropy
generation, and this corresponds to the case of ϕ¼ 1.
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5. Convergence of the HAM solution
5.1 h-curves
HAM provides us with a great freedom in choosing the solution of a non-linear problem
by different base functions. This has a great effect on the convergence region because
the convergence region and the rate of a series are chiefly determined by the base
functions used to express the solution. Therefore, a non-linear problem could be
approximated more efficiently by ensuring its convergency. The convergence and rate
of approximation for the HAM solution depends on the value of auxiliary parameter
h strongly. By means of the so-called h-curves, it is easy to find out the so-called valid
regions of auxiliary parameters to gain a convergent series solution. The convergence
and rate of approximation for the HAM solution depends on the value of auxiliary
parameter h strongly. By means of the so-called h-curves, it is easy to find out the
so-called valid regions of auxiliary parameters to gain a convergent series solution.
The expressions for u, C and θ contain the auxiliary parameters hu, hC and hθ. Here to
see the admissible values of hu, hC and hθ, the h-curves are plotted for 15th-order of
approximation in Figure 2(a)-(c) by taking the values of the parameters as: B¼ 0.2,
Br¼ 0.1, c1¼ 0.3, c2¼ 0.3, δ1¼ 0.1, Gr¼ 1.5, nβ¼ 0.9, nk¼ 0.9, nμ¼ 0.9, nρ¼ 0.9,
φ¼ π/4, Re¼ 2, s1¼ 2 and s2¼ 2. It is clearly noted from Figure 2(a) that the range for
the admissible values of hu is −0.95ohuo−0.7. From Figure 2(b) it can be seen that
the hC curve has a line segment that corresponds to a region of �0:9ohCo�0:4.
Figure 2(c) depicts that the admissible value of hθ are −1ohθo0.2. A wide valid zone
is evident in these figures ensuring convergence of the series.
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Figure 2.
The h-curves for

velocity u(y), micro-
rotation CðyÞ and
temperature θ(y)
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6. Results and discussion
The solutions for u1, C1, θ1, u2, C2 and θ2 have been computed and presented graphically
through Figures 3(a)-11(b). The effects of various parameters like couples stress
parameter, micropolarity parameter, Reynolds number, Grashof number and viscous
dissipation parameter entering into the problem on velocity, micro-rotation,
temperature, entropy generation number and Bejan number have been studied.

6.1 Effect of couple stress parameter (si )
From Figures 3(a)-(c) and 4(a)-(b), we notice that as couple stress parameter s2
increases, velocity, temperature, entropy generation number and Bejan number
increases. As couple stress parameter increases (s2→∞), i.e., couple stresses
decreases (γ→ 0), we retrieve the case of a Newtonian fluid. Hence Figure 3(a)
indicates that the velocity of the Newtonian fluid is more than that of the micropolar
fluid. A part of velocity in micropolar fluids is due to couple stress tensor generated
by rotation of particles. Hence we conclude that in one dimensional straight flow, the
effect of couple stresses on velocity is small. From Figure 3(b) we see that the effect of
couple stresses on micro-rotation is very high. As s2 increases, micro-rotation
increases. Hence we can say that couple stresses can affect micro-rotation very much.
The temperature due to dissipation of energy (depending on velocity) also changes
very slightly. This is seen in Figure 3(c) as s2 increases temperature increases slightly.
The same effect is seen on the entropy generation number Ns in Figure 4(a). But near
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Figure 3.
Variation of non-
dimensional
(a) velocity; (b)
micro-rotation; and
(c) temperature
profiles for various
values of s2 with
fixed values of
B¼−0.6, Br¼ 0.1,
c1¼ 0.6, c2¼ 0.6,
δ1¼ 0.1, Gr¼ 0.8,
nβ¼ 0.8, nk¼ 1.2,
nμ¼ 0.9, nρ¼ 0.9,
φ¼ π/4, Re¼ 2,
s1¼ 2
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the plates effect of couple stresses on Ns is considerable. This may be due to more
friction near the walls. From Figure 4(b) we see that Bejan number is higher at the
interface. From the limiting case of s2→∞, we see that Be for viscous fluids is less
than the micropolar fluids. A slight increase in couple stress parameter s2, increases
Bejan number Be very much at the interface. Since Be is nearly zero near to the plates,
the entropy generation rate in the transverse direction is almost zero (at upper plate)
and fluid friction dominates.

6.2 Effect of cross-viscosity or micropolarity parameter (ci )
From Figures 5(a)-(c) and 6(a)-(b), we observe that as micropolarity parameter c2
increases, velocity (considerably), micro-rotation (numerically), temperature and
entropy generation number decreases. But Bejan number Be increases. As c2→ 0,
we retrieve the case of Newtonian viscous fluid. As c2 increases, it is observed from
Figure 5(a) that velocity decreases. The velocity in case of micropolar fluid is less
compared to that of viscous fluid case. In Figure 6(a), the variation of the entropy
generation number Ns is shown, which varies in entire region of y with variation in c2 is
shown. We observe that Ns is minimum at the interface and variation in c2will not
affect Ns but c2 effects Ns very much near the plates. The opposite behavior is seen in
the case of Bejan number Be (Figure 6(b)). As c2 increases, Be also increases. This is in
contrast to the behavior ofNs as s2 increases. We see that Be at any point y is more than
0.4 near the plates. This indicates that even near to the walls effect of friction is low.
This is a very useful property. We can conclude that micropolarity of fluids reduces the
frictional effects near the plates.

6.3 Effect of Reynolds number (Re)
From Figures 7(a)-(c) and 8(a)-(b), we observe that as the Reynolds number Re
increases, the velocity, micro-rotation (numerically), temperature and entropy
generation number Ns are increases. All these values of u, C, θ and Ns rise very
much with a small raise in the Re values. But near the walls Bejan number decreases as
Re increases which shows high dissipation of energy or entropy generation rate near
the plates. But near the walls Bejan number decreases as Re increases which shows
high dissipation of energy or entropy generation rate near the plates. From Figure 8(a),
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Figure 4.

Variation of
non-dimensional

(a) entropy
generation number;

(b) Bejan number for
various values of s2
with fixed values of
B¼ –0.1, Br¼ 0.8,
c1¼ 0.1, c2¼ 0.1,
δ1¼ 0.1, Gr¼ 2,
nβ¼ 0.9, nk¼ 1,

nμ¼ 0.9, nρ¼ 0.9,
φ¼ π/4, Re¼ 2,

s1¼ 1, Ω¼ 1
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it is observed that the linear temperature distribution between the two plates occurs
at a low value of the Reynolds number (Re¼ 1). This linear temperature profile
corresponds to the energy due to heat conduction is dominant over the energy due
to viscous dissipation. Also from Figure 8(a), it is observed that the larger velocity
and temperature gradients occurring near the plates enhance the entropy generation
in those regions.
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Variation of non-
dimensional
(a) velocity; (b)
micro-rotation; and
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6.4 Effect of Grashof number (Gr)
From Figures 9(a)-(c) and 10(a)-(b) we notice that as the Grashof number Gr increases,
velocity, micro-rotation, temperature and entropy generation number increases.
Figure 9(a) indicates that the effect of Grashof number on velocity is high. From
Figure 9(b)-(c), we observe that as Gr increases, micro-rotation and temperature
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increases slightly. The same effect is seen on entropy generation number Ns in
Figure 10(a). But near the plates effect of Grashof number on Ns is considerable. This
may be due to more friction near the walls. From Figure 10(b) we see that Bejan number
is higher at the interface. As Grashof number Gr increases, Bejan number Be very much
at the interface.
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6.5 Effect of viscous dissipation parameter (Br/Ω)
The effect of the viscous dissipation parameter (Br/Ω) on the entropy generation
number Ns and Bejan number Be are shown in Figures 11(a)-(b). A small raise in the
values of (Br/Ω), increases the values of entropy generation number Ns and decreases
the values of Bejan number Be very much. At a low value of (Br/Ω), the entropy
generation number is independent of the transverse distance, which corresponds to the
energy due to heat conduction and is dominant over the energy because of viscous
dissipation since the viscous dissipation parameter measures the relative importance of
the entropy generation due to the viscous effect to temperature gradient. There is a
lowest point of the entropy generation at each specified value of the viscous dissipation
parameter except for the value of (Br/Ω)¼ 0. At the high values of the (Br/Ω), each plate
acts as a strong concentrator of irreversibility due to the high velocity and temperature
gradients occurring near the plates. The figures indicate that at the interface y¼ 0,
the entropy generation rate is minimum, i.e., available energy in transverse direction at
the interface is maximum. At the plates Be is minimum and Ns is maximum, i.e., the
fluid friction dominates near the plates.

From Figures 4(b) and 6(b), the comparative study of effect of couple
stress parameter s2 and micropolarity parameter c2 on Be shows that near the
plates s2 has no effect but c2 increases the values of Be. Again we observe that
Be is more than 0.4 near the walls for c2 and Be is almost zero near the walls for s2 in
Figures 4(b) and 6(b). This indicates that micropolarity parameter offers smoothness
to the walls and hence friction near the walls deceases. This shows an industrial
application that micropolar fluids with high micropolarity and less couples
stresses will act as a good lubricant. The reason for this may be due to the fact that
much of the momentum of the fluid particles is transferred to the rotation of the
particles by decreasing their velocity. Hence friction and dissipation of energy
decreases near the plates.

7. Conclusion
In this paper, the flow of two incompressible immiscible micropolar fluids between two
inclined parallel plates has been studied. The governing equations are expressed in the
non-dimensional form and are solved by using HAM. The second law of
thermodynamics is applied to investigate the irreversibilities in terms of the entropy
generation rate. The effect of viscous dissipation parameter or group parameter (Br/Ω)
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on the entropy generation number (Ns), Bejan number (Be) is presented through figures.
It is observed that:

(1) The presence of couple stresses in the fluid increases the velocity and
temperature.

(2) The presence of micro-rotation decreases the velocity in comparison with the
Newtonian fluid case.

(3) The temperature distribution at low values of the Reynolds number and Grashof
number is found to be a linear function of y between the two plates, while it is
found to be a non-linear function of y at larger values of those parameters.

(4) The entropy generation distribution is not independent of the velocity and the
temperature distributions. When the value of (Br/Ω)¼ 0, the entropy generation
distribution is observed to be independent of the transverse distance and the
entropy generation increases with increasing the viscous dissipation parameter
(Br/Ω) at certain constant values of other parameters.

(5) The entropy generation rate is maximum near the plates in both the zones as
compared to that of the channel interface. This demonstrates that the frictional
forces are dominant near the plates and these forces enhance the entropy
production. Conversely, Bejan numbers have minimum values neat to the plates
and maximum values near to the interface.

(6) The entropy generation rate is more near the plate in Zone I than that of Zone II.
This may be due to the fact that the fluid in Zone I is more viscous. This
indicates the more the viscosity of the fluid is, the more the entropy generation.

(7) Bejan number is a maximum at the centre point of the channel. This reveals that
the amount of available energy for work is more and irreversibility is less.

(8) Based on limiting values of micropolarity parameter (c→ 0) and couple stress
parameter (s→∞), we conclude that the values of velocity, temperature and
entropy generation number for viscous fluid are more than the corresponding
values in micropolar fluid case. This may be due to the fact that in viscous
fluids micro-rotations are absent this implies that exergy is not transformed to
give micro-rotation to the particles and hence velocity, etc. increases and hence
entropy increases.

(9) As micropolarity increases, entropy generation rate near the plates decreases
and irreversibility decreases. This indicates an important industrial application
for micropolar fluids to use them as a good lubricant.
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