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Abstract

This work is focused on the study of unsteady heat and mass transfer by mixed convection flow over a vertical permeable cone rotating
in an ambient fluid with a time-dependent angular velocity in the presence of a magnetic field and heat generation or absorption effects. The
cone surface is maintained at variable temperature and concentration. Fluid suction or injection is assumed to occur at the cone surface. Th
coupled nonlinear partial differential equations governing the thermosolutal mixed convective flow have been solved numerically using an
implicit, iterative finite-difference scheme. Comparisons with previously published work have been conducted and the results are found to be
in excellent agreement. A parametric study showing the effects of the buoyancy parameter, suction or injection velocity and heat generation
or absorption coefficient on the local tangential and azimuthal skin friction coefficients, and the local Nusselt and Sherwood numbers is
conducted. These are illustrated graphically to degpecial features of éhsolutions. It is found that thedal tangential and azimuthal skin-
friction coefficients and local Nusselt and Sherwood numbers increase with the time when the angular velocity of the cone increases, but
the reverse trend is observed for decreasing angular velocity. However, these are not mirror reflection of each other. Increasing the buoyancy
ratio is predicted to increase the skin-friction coefficients and\theselt and Sherwood numbers. Also, increases in the heat generation or
absorption coefficient increase the local tangential skin-friction coefficient and Sherwood number and decrease the local Nusselt number. Or
the other hand, the azimuthal skin-friction coefficient and the Nusselt and Sherwood numbers increase (decrease) with the increase in the
suction (injection) parameter.
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1. Introduction the centrifugal force. This fid is then replaced by the fluid
moving in the axial direction. Thus, the axial velocity of the
The study of flow and (or) heat and mass transfer over ro- fluid in the vicinity of a rotating body is more than that of a
tating bodies is of considerable interest due its occurrence instationary body. This increase in the axial velocity enhances
many industrial, geothermal, geophysical, technological and the convective heat transfer between the body and the fluid.
engineering applications. Such a study is importantin the de-rpis principle has been used to develop practical systems for
sign of turbines and turbo-machines, in estimating the flight ;, .o 2 ing heat transfer. For example, the utility of rotating

path of rotating wheels and spin-stabilized missiles and in e
. X . . condensers for sea-water distillation and space-craft power
the modeling of many geophysical vortices. As explained by : . . .
plants in a zero-gravity environment was shown by Hickman

Takhar et al. [1], when an axisymmetric body rotates in a . . .
forced flow field, the fluid near the surface of the body is [2}- Ostrach and Braun [3] have investigated the possibility

forced outward in the radial direction due to the action of Of cooling the nose-cone of re-entry vehicles by spinning the
nose. Also, rotating heat exchangers are extensively used by

the chemical and automobile industries. Early investigations
Corresponding author. Tel. and fax: +965-483-2761. . . .
E-mail addresses: chamkha@paaet.edu.kw (A.J. Chamkha), of flow and heat transfer in rotating systems are given by
ali246@paaet.edu.kw (A. Al-Mudhaf). Dorffman [4] and Kreith [5].
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Nomenclature

Bo magnetic induction Two wall temperature attimegs=0............ K
c concentration u, v, w Vvelocitycomponents.................. gt
cp specific heat at constant pressure :kigJ1.K—1 14 characteristic velocity .. ............... gt
Cw0 wall concentration at timg* =0 wo suction or injection velocity ........... ol
C dimensionless concentration, x,y,z curvilinear coordinates
= (¢ — ¢coo)/(Cw — Co0)
Cyx  tangential skin friction coefficient, Greek symbols
_ _Re;1/2¢(t*)Hn(0’ %) o semi-vertical angle of the cone
Cyy  azimuthal skin friction coefficient, Be coefficient of concentration expansion
_ —2Re;l/2¢ ()G'(0. 1) Br cpefflcu_ant of thermal expan_S|on _
D mass diffuSiVity .. ................... sl A dimensionless heat generation or absorption
E electric field coefficient,= Qo/(pcp,§20 Sina)
g gravitational acceleration.............. -3M2 & a constant used in the continuous function
G,H dimensionless similarity velocity functions of ime . .
Gr, Grashof number, n similarity variable = (2o sina/v)Y/?z
= gBr cosa(T,, — Tao) L3 /12 (") coqtinuous function
Ha?  square of Hartmann numbet,o B3L?/p of time
Ho dimensionless suction or injection velocity, A buoyancy parameter (Richardson number),
— wo/[v(L20Sina) 2] =Gr/R&
k fluid thermal conductivity ... .. ... Win—1l.k-1 " dynamic viscosity ............... kop~1.s71
L characteristiclength ...................... m o magnetic permeability
M magnetic parametes Ha?/Re;, % kinematic viscosity .................. 1
N buoyancy ratio= Be(cuw — coo) /187 (Tw — Too)] p fluiddensity . ............cooeoeunn... kp—3
Nu, local Nusselt numbek —Rei/ 29’(0, ) o electrical conductivity
Pr Prandtl number= pve,/k 0 dimensionless temperature,
0o dimensional heat generation or absorption =T —Txo)/(Ty — Txo)
coefficient 2 angular velocity ofthe cone............. s
Re;  Reynolds numbets $29L?sina /v 20 angular velocity of the cone at=0....... st
Re, magnetic Reynolds numbet, uoo VL .
Re, Iocgl Reynolgs numbet 2ox2sina/v Subscripts
< Schmidt number= v/D i initial condition
Sh, local Sherwood numbet —ReY%C’ (0, 1*) t,x,z partial derivatives with respect tox andz,
' dimensional time.......................... s respectively
r* dimensionless times (2o sina)z w condition at the wall
T TEMPErature .. ...ttt e K oo condition at free stream

The problem of forced convection from isothermal and heat sources. The laminar natural convection from a non-
non-isothermal disks rotating in an ambient fluid was in- isothermal cone was analyzed by Hering and Grosh [15]
vestigated by Sparrow and Gregg [6] and Hartnett [7], re- and Roy [16]. An approximate method of solution for the
spectively. Tien and Tsugi [8], and Koh and Price [9] have overall heat transfer from vedal cones in laminar natural
presented a theoretical apsis of the forced flow and heat convection was reported by Alamgir [17]. The laminar nat-
transfer past a rotating cone. The influence of the Prandtl ural convection over a slender vertical frustum of a cone has
number on the heat transfer on rotating non-isothermal disksbeen studied by Na and Chiou [18,19]. Yih [20] has consid-
and cones was investigated by Hartnett and Deland [10]. Theered the effects of thermal radion on natural convection
effect of the axial magnetic field on the flow and heat trans- about a truncated cone. The similarity solution of the mixed
fer over a rotating disk was considered by Sparrow and Cessconvection from a rotating veécal cone in an ambient fluid
[11]. Tarek et al. [12] have obtained an asymptotic solution was obtained by Hering and Grosh [21] for Prandtl number
of the flow problem over a rotating disk with a weak axial Pr = 0.7 and by Himasekhar et al. [22] for a wide range of
magnetic field. Lee et al. [13] have studied the flow and heat Prandtl numbers. Recently, Anilkumar and Roy [23] have
transfer over a rotating body of revolution (sphere). Wang obtained similarity solutions for the problem of unsteady
[14] has investigated the flow and heat transfer on rotat- mixed convection from a rotating vertical cone in a rotating
ing cones, disks and axisymmetric bodies with concentratedfluid in the presence of thermal and mass diffusion.
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All of the above studies deal with steady flows. In many
practical problems, the flow could be unsteady due to the an-
gular velocity of the spinning body which varies with time
or due to the impulsive change in the angular velocity of the
body. The unsteady boundary layer flow of an impulsively-
started translating and spinning rotational symmetric body
has been investigated by Ece [24], who obtained the solu-
tion for small time. The corresponding heat transfer problem
has been considered by Ozturk and Ece [25]. Takhar et al.
[26] have solved the problem of unsteady laminar MHD flow
and heat transfer in the stagnation region of an impulsively
spinning and translating sphere in the presence of buoyancy
forces. More recently, Roy and Anilkumar [27] have consid-
ered the problem of unsteady mixed convection from a ro-
tating cone in a rotating fluid due to the combined effects of
thermal and mass diffusion for the conditions of prescribed Fig. 1. Physical model and coordinate system.
wall temperature and heat flux.

In this paper, the problem of unsteady heat and masssumed to be smalRe, = uoo VL <« 1 whereuo ando are
transfer by mixed convective flow over a rotating vertical the magnetic permeability and the electrical conductivity,
permeable cone in the presence of a magnetic field and heagnd V and L are the characteristic velocity and length, re-
generation or absorption effects is considered. This problemspectively). Under this condition, it is possible to neglect the
represents a generalizatiohtbe problems considered ear- induced magnetic field in comparison to the applied mag-
lier by Takhar et al. [1] and Roy and Anilkumar [27] for the netic field. Since there is no applied or polarization voltage
case of prescribed wall temperature. The unsteadiness in themposed on the flow field, the electric field = 0. Hence,
flow field is due to the angular velocity of the cone which Maxwells’ equations are uncoupled from the Navier-Stokes
varies arbitrarily with time. The coupled nonlinear parabolic equations (see Cramer and Pai [28]) and the only contribu-
partial differential equations governing the flow and heat and tion of the magnetic field is the Lorentz force in the absence
mass transfer problem have been solved numerically usingof the Hall effect. Under the above assumptions and using
an implicit iterative finite-difference scheme. the Boussinesq approximation, the boundary-layer equations

governing this heat and mass transfer convective flow on the
rotating cone [8,11,22] are given by

2. Problem formulation

ux—i-x*lu—i—wZ:O ()
Consider unsteady, laminar, non-dissipative, constant s + ey 4+ wu; — v?/x

property, incompressible boundary-layer heat and mass —,;_. + g8 cosw(T — Txo)

transfer by mixed convective axisymmetric flow of an B

) 2
electrically-conducting and heat generating or absorbing + gBc COSa(c — coo) — o Byu/p (2)
fluid over a heated vertical ppeable cone rotatinginanam- v, +uv, + wv, + uv/x = vv,, — oBgv/p 3)
X R A
bient fluid with t|m¢ dependent angulqr velocity,(1*) = T+ uTy +wl, = (v/P)Te; + Qo/(pep)(T — Tao) (4)
200 ("), t* = (2pSina)t, around the axis of the cone. Uni-
form fluid suction or injection with velocitywp is assumed €t T UCx +wez = Dc,, (5)

to occur at the cone surface. A uniform magnetic field of The initial conditions are given by the Steady_state equa-
strengthBg is applied in thez-direction (normal direction)  tions:

and the gravitational acceleratignacts downward parallel

to the axis of the cone. The physical model and the coordi- #(x, z,0) = u;(x, 2)

nate system are shown in Fig. 1. The rectangular curvilinear y(x, 7, 0) = v; (x, 2), w(x, z,0) = w;(x, 7)

fixed coordinate systenw, y, z), wherex is measured along

a meridional section, the-axis is along a circular section, T, 2,0 =Ti(x,2), ctx.z,0)=ci(x,2) (6)
and thez-axis is normal to the cone surface have been em- The boundary conditions for this problem are given by
ployed. Letu, v andw be the velocity components along the

x (tangential),y (circumferential or azimuthal) angd (nor- u(x,0,1)=0

mal) directions, respectly. The wall temperaturé&,, and w(x,0,7) = wo, v(x,0,1) = 0x sinaq)(t*)

wall concentration,, are assumed to vary linearly with the T(x,0,1) =T, (x).
distancex and the ambient temperatufé,,) and concen-
tration (c) are constant. The cone surface is assumed to be
electrically-insulated. The magnetic Reynolds number is as- ¢(x, 00, 1) = cxo

c(x,0,1) =cyx)

u(x,o00,t) =v(x,00,t) =0, T(x,00,1) =Ty
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u(o0o,z,t) =v(00,z,t) =0, T(00,z,) =T

c(00,2,) =Co0, 2z2>0

HereT is the temperature; is the concentrationsy is the
coefficient of the thermal expansiofy is the coefficient of
the concentration expansiom;is the semi-vertical angle of
the coney is the kinematic viscosity;,, is the specific heat

(7)

at constant pressure, is the density of the fluid; andz*

(t* = 0t) are the dimensional and dimensionless times, re-

spectively;2q is the angular velocity of the cone at= 0;

Pr is the Prandtl number is the mass diffusivityQg is the

dimensional heat generation or absorption coefficigt?)

is a continuous function having continuous first-order deriv-
ative; the subscripts x andz denote partial derivatives with
respectta, x andz, respectively; the subscriptienotes ini-
tial conditions; and the subscriptsandoco denote wall and

ambient conditions, respectively.

It is convenient to transform Eqs. (1)—(5) into thg t*)

system by applying the following transformations;

n= (0 Sina/v)l/zz, t* = (Qosina)t

u(x,z,t)=—2"2(820 sina)H'(n, t*)¢(1*)
v(x,z, 1) = (£0x Sina)G(n, t*)q)(t*)
w(x, z,1) = v(2osine) Y2 H (n, 1*) ¢ (1*)
T(x,2,1) — Too = (T — Too)6(n, 1¥)

Ty — Too = (Tywo — Teo)X/L

c(x,2,1) = Coo = (Cw — €o0)C (1, 1¥)

Cw — Coo = (Cwo — Coo)X /L

Gr = gBr cosa(Ty — Tao)L3/v?

Re; = 2oL?sina/v, A =Gr/Re?
N = Belcw = coo) /[ Br(Tw — Too) |

M =Ha%/Rer, S=v/D

Ha? =0 B35L%/p, A= Qo/(pcyR0Sina)

whereT,,0 andc,,0 the wall temperaturand concentration at
timer* = 0, respectively. With these transformations, Eq. (1)
is identically satisfied and Egs. (2)—(5) reduce to the follow-

ing system of equations,
H" —¢HH" +27'¢(H')* — 2¢G?

— 2¢O+ NC)—MH'

— ¢ 1(dp/dt*)H' — dH'/or* =0
G"—¢(HG'—H'G)—MG —09G/3r* =0
0" —Pr(Ho' =27 H'0)¢ + Prao — Prag/ar* =0
C" —S(HC' = 27*H'C)¢p — ScdC/ar* =0
The boundary conditions (7) can be rewritten as
H(0,t*) = Ho/¢(t*),  H'(0,1*)=0
G(0,1*)=6(0,r*)=C(0,") =1
H'(00,1*) = G(00,1*) =6(00, ") = C(00,1*) =0

(8)

9
(10)
(11)
(12)

(13)

where Hy = wo/[v(£20sine)/?] is the dimensionless suc-
tion or injection velocity. Egs. (9)—(13) reduce to those of
Takhar et al. [1] when Eq. (12) is ignored atthy = N =

A = 0. Also, they reduce to those reported by Roy and
Anilkumar [27] for the case of prescribed wall temperature
(with o1 =1) whenHp=M = A =0.

The initial conditions (i.e., conditions at* = 0) are
given by the steady state equations obtained from (9)—(12)
by putting¢ = 1, dp/dr* = 9H’/3t* = G /dr* = 0 when
t* = 0. The steady-state equations are

H" —HH"+27Y(H')? - 2G?

~ 200+ NC)—MH' =0 (14)
G"—(HG'—H'G)—-MG=0 (15)
0" —Pr(HO' —27*H'0) + Prag =0 (16)
" —S(HC'—27*H'C) =0 (17)

with boundary conditions

HO) =Hy, H(@0 =0 G0 =60=C0=1
H'(00) = G’ (00) = 6(00) = C(00) =0 (18)

Heren andr* are the transformed coordinatés’, G and
H are the dimensionless velocity components along the tan-
gential, azimuthal and norrhdirections, respectively§ is
the dimensionless temperatut@js the dimensionless con-
centrationGr, is the Grashof numbeRe;, is the Reynolds
number;. is the dimensionless buoyancy parameféris
the buoyancy ratio such that < 0 corresponds to opposing
flow while N > 0 corresponds to aiding flow¥ is the di-
mensionless magnetic parametéa? is the Hartmann num-
ber; A is the dimensionless heat generation or absorption
coefficient; L is the characteristic lengtlsc is the Schmidt
number;u is the coefficient of viscosity; and a prime denotes
a derivative with respect tg.

It may be remarked that the steady-state equations (14)—
(16) in the absence of all of the magnetic figlth = 0),
buoyancy ratio N = 0) and heat generation or absorption
effects(A = 0) are identical to those of Himasekhar et al.
[22] if we replaceH’ by —2F and by Gr/Re?. Further-
more, Egs. (14)—(16) in the absence of the buoyancy and heat
generation or absorption effects£ 0, A = 0) and for con-
stant wall temperature case are the same as those of Sparrow
and Cess [11] if the terr®r H'6/2, which is the contribu-
tion due to the linear variation of the wall temperature with
the distance is omitted.

Of special interest for this problem are the local skin fric-
tion coefficients in the tangential and azimuthal directions,
the local Nusselt number and the local Sherwood number.
These physical quantities are respectively given by

Cryx = 2u(du/dz),~0/ [ p(20x Sina)?]
— —Re; % (*)H" (0, 1¥)

C py = —21(9v/32).=0/ [ p(20x sin)?]
— —2Re; %¢(")G'(0, 1*)
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2.00

1/2 -
NU, = —x(3T/32)z0/ (T — Too) = —Rey%60'(0, 1) _, K00
1.75 o =1.

- _ . S — _ReY2c(0 +* =0.2 Pr=0.78

Sy = —x(0¢/02):=0/ (cu = co0) = —R&°C'(0.17) - (19) o4 A T e =02 Se=0.6
whereRe, = 20x2sina/v is the local Reynolds number. 125 ‘Q);S
»=1.0

1.00 4

Hn,t)

3. Numerical method AN=05.0,1,2,3,4,5

The coupled nonlinear parabolic partial differential equa-
tions (9)—(12) under boundary conditions (13) and initial
conditions (14)—(18) have been solved numerically using an . o —
implicit, iterative tri-diagonal finite-difference scheme simi-
lar to that discussed by Blottner [29]. All first-order deriva-
tives with respect to* are replaced by two-point backward Fig. 2. Effect onNV on velocity profiles—H' (1, 1*).
difference formulae of the form

dR/3t* = (R; j — Ri—1.)/ At* (20) absence of mass transfer, surface transpiration and heat gen-
eration or absorption effects. For brevity and page limitation,

where R represents the dependent variablésor G or ¢ the effect of these parameteis (4 andPr) on the solutions

or C andi andj are node locations in the& andn direc- will not be repeated herein.

tions, respectively. First, the third-order partial differential In order to assess the accuracy of the numerical method,

equation (9) is converted into a second-order partial differen- the present results were compared with the steady-state re-
tial equation by substitutingf” = N. Then the second-order  gyjts for the surface shear stresses in the tangential and
partial differential equations foN, G, 6 and C are dis- azimuthal directiong—H"(0), —G/(0)], and the surface
cretized using three-point ceatdifference formulae, while  peat transfer[—0’(0)] in the absence of the magnetic
first-order derivatives with respect tp are discretized by  fje|d (M =0), mass transfexN = 0), surface transpira-
employing the trapezoidaule. At each line of constant, tion (Ho = 0) and heat generation or absorption = 0)
a system of algebraic equations is obtained. The nonlinearyith those of Himasekhar et al. [22] and found to be in
terms of these equations are evaluated at the preViOUS iter'exce”ent agreement_ Th|S marison iS given in Tab'e 1.
ation and the system of algebraic equations is then solved|n addition, the surface shear stresses and heat transfer
with iteration by using the well-known Thomas algorithm [—H"(0), —G’(0), —6’(0)], and ambient velocity- H (co)
(see Blottner [29]). The same procedure is repeated for thefor the steady-state case in the absence of buoyancy effects
nexts* value and the problem is solved line by line until the (A = 0) and with Hy = 0 and A = 0 were compared with
desired:* value is reached. A convergence criterion based those given by Sparrow and Cess [11] and the results were
on the relative difference between the current and previousfgound to be in very good agreement. These comparisons are
iterations is employed. When this difference reaches®10  shown in Tables 2 and 3.
the solution is assumed to have converged and the iteration Fig. 2 displays representative profiles for the tangential
process is terminated. velocity [—H'(n, t*)] for various values of the buoyancy

ratio N for both increasing and decreasing angular veloc-

ities [¢(1*) = 1+ e1*2, ¢ = £0.2] when Hp =0, M = 1,
4. Resultsand discussion A=1,Pr=0.78,%=0.6, A =0, andt* = 1, respectively.

It should be noted that the curve faf < O corresponds

In this section, numerical results for the velocity, temper- to opposing flow while those fav > 0 correspond to aid-

ature and concentration prafl as well as the local skin fric-  ing flow. As expected, increases in the buoyancy ratio (or
tion coefficients in the tangential and azimuthal directions, solutal buoyancy effect) cause an increase in the buoyancy-
the local Nusselt number and the local Sherwood numberinduced flow along and normal to the cone and decreases
based on the finite-difference methodology discussed ear-in circumferential flow and the thermal and solutal level
lier are presented and/or discussed for various values of thewithin the boundary layer for all times. Physically speak-
physical parameters. The results have been obtained for bothing, as the cone rotates, the fluid near the surface of the
increasing and decreag angular velocitie§e¢ (1*) = 1 + cone is forced outward along the tangential direction due
et*?, ¢ = 4+0.2, 0< r* < 2] for several values of the buoy-  to the action of the centrifugal force. This fluid is then re-
ancy ratioN (—0.5 < N < 5), the dimensionless suction placed by the fluid moving in the normal direction. Thus,
or injection velocityHp (—3 < Hp < 3), and dimensionless  there is a close relationship between the tangential and nor-
heat generation or absorption coefficient—2 < A < 1.5). mal velocities. As the solutal buoyancy effects increase, the
The influence of the other physical parameters involved in outflow (tangential) velocityd’ increases. This causes more
the problem were presented earlier by Takhar et al. [1] in the normal flow towards the cone resulting in an increase in the
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Comparison of heat transfer and surface shear strgs$é€), —G’(0), —H" Q)] for t* =M =N=Hy=A=0

Pr Present results Himasekhar et al. [22]
r=0 r=1 A=10 A=0 A=1 A=10
0.7 —6'(0) 0.4299 06121 10099 04299 06120 10097
0.7 —-G'(0) 0.6158 08497 13992 06158 08496 13990
0.7 —H"(0) 1.0255 22014 85045 10256 22012 85041
2.0 —0'(0) 0.7001 09020 14477 Q7002 09018 14475
2.0 -G'(0) 0.6158 Q7697 12383 06158 Q07696 12381
2.0 —H"(0) 1.0255 19423 72035 10256 19421 72030
10 —6'(0) 14111 15663 23583 14110 15662 23580
10 —-G'(0) 0.6158 06838 09841 06158 06837 09840
10 —H"(0) 1.0255 15638 50825 10256 15636 50821
100 —0'(0) 0.8522 29220 43013 28520 29218 43010
100 -G'(0) 0.6158 06289 Q7376 06158 06288 Q7374
100 —H"(0) 1.0255 12229 29488 10256 12227 29486
Table 2
Comparison of surface shear stresse#l”’ (0), —G’(0)] and ambient velocity— H (co)] for t* = Hg=A=A=0
M Present results Sparrow and Cess [11]
—H"(0) -G'(0) —H (00) —H"(0) -G'(0) —H (00)
0 10207 06159 08848 1021 Q616 Q885
0.5 0.773 08488 04587 Q770 Q849 Q0459
1 0.6194 10692 02531 0619 1069 Q253
2 0.4613 14418 01088 0461 1442 Q109
3 0.3813 17477 00617 0381 1748 Q0618
4 0.3308 20097 00406 0331 2010 Q0408
Table 3
Comparison of surface heat transfer9’ (0)] for t* = Hg=1=A=0
Pr Present results Sparrow and Cess [11]
M=01 M=1 M =10 M=01 M=1 M =10
0 0.0763 03958 11337 00766 0396 1134
0.5 0.0426 02819 Q9558 00428 0282 Q956
1 0.0282 01939 08011 00244 0194 Q801
2 0.0107 00981 Q5712 00108 00982 0571
3 0.00612 00587 04218 000614 00588 Q422
4 0.00406 00344 03181 000407 00395 0318
—1/2

normal velocityH. The increase in the tangential and nor- (Re, ' “Sh,) for increasing and decreasing angular veloci-
mal velocities asV increases is followed by simultaneous ties [¢(t*) = 1 + e1*2, ¢ = £0.2) when Ho =0, M =1,
decreases in the amuthal velocityG, temperature® and A=1,Pr=0.78,<=0.6, A =0, 0< r* < 2, respectively.
concentratiorC since the velocitied/ andH' act as a op-  The effect of the time variation is more pronounced for large
posing mechanisms as seen from Egs. (10)—(12). The effects* (+* > 1). For a fixed value oW, the local skin friction co-

of decreasing the angular velocity of the cone is seen to efficients, the local Nusselt number and the local Sherwood
increase the flow velocities significantly with insignificant number increase with an increasing angular velocity, but the
effect on both the temperature and concentratiost at 1. reverse trend is predicted for a decreasing angular veloc-
The behaviors regarding the tangential velocity are clearly ity. However, these are not a mirror reflection of each other.
shown in Fig. 2 while the trends of the normal and azimuthal The skin-friction coefficients and the Nusselt and Sherwood
velocities[—H (n, t*), G(n, t¥)], temperaturéd (n, t*)] and numbers are found to be strongly dependeniofor all #*.
concentration C(n, t*)] were observed from other results The skin-friction coefficients in the tangential and azimuthal
not presented here for brevity. directions(Rei/ZCfx, 2*1Rei/2ny) and the Nusselt and

Figs. 3—6 illustrate the effects of the buoyancy rafion Sherwood number&Re; “/*Nu,, Re; Y/?sh,) increase with

the |Oca| Skin friCtion CoeffiCientS in the tangential and az- increasing Values ON. |nspection Of F|g 2 ShOWS C|ear|y

. N 1/2 1p.1/2 ) o R
imuthal directiongRey °C ., 2 'Rey/°C ), the local Nus-  that the gradient of the velocity in the tangential direction
selt number(Re;l/ZNux) and the local Sherwood number and hence, the skin-friction coefficient in the tangential di-
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the wall gradient of the tangential velocity tends to decrease

rection increases with increasing values\afAlso, as men-  yia|ding a net decrease in the tangential skin-friction coeffi-
tioned before, all of the azimugivelocity, temperature and  ¢jent for all times. On the other hand, injection or blowing

concentration are reduced everywhere and their boundaryqs ¢,ig (Ho > 0) from the cone surface into the boundary

layers become thinner @6 increases. This causes inCreases |4ver cause the different boundary layers to stretch produc-
in the negative wall gradients of the azimuthal velocity, tem- g |ower tangential and azimuthal skin-friction coefficients
perature and concentration and, hence, in the skin-friction 5,4 Nusselt and Sherwood numbers for all times. As men-
coefficient in the azimuthal direction, Nu_sselt number and tioned before, the effect of reducing the angular velocity of
Sherwood number. The effect of decreasing the angular ve-iha cone results in significant reductiongip, andc ;, and

locity of the cone is seen to cause reductions in alf'pt,  gjight reductions iu, andsh, for timest* > 1. These fea-
Cry, Nu, andSh, due to the decreases in the wall gradient ,res are clear from Figs. 7-10.

of H and negative wall gradients ¢f, 6 andC. These and Fig. 11 presents the effect of the heat generation or ab-
all previous trends are obvious from Figs. 3-6. sorption coefficientA on the temperature profiles for both
The effect of the suction or injection parametés on increasing and decreasimangular velocities at* = 1. Phys-

the local skin .fr|ct|on1§:20eff|C|e[ris n /ghe tangential and az- jca|ly speaking, the presence of heat generation effects has
imuthal directions Rey' “Crx, 27"Rey’ “Cyy) and the local  the tendency to increase the thermal state of the fluid caus-
Nusselt and Sherwood numbe@ImNux, Re;l/Zth) is ing its temperature and thermal boundary layer to increase.
presented in Figs. 7-10 fap(r*) = 1 + e1*2, ¢ = £0.2, On the other hand, when heatsaloption effects are present,

M=1,N=1,Pr=078,%<=06,A=1andA =0 the reverse trends where both the fluid temperature and its
in the time range X r* < 2, respectively. Imposition of  thermal boundary layer decrease are produced. This is evi-
fluid wall suction(Hp < 0) tends to decrease the boundary dentfrom Fig. 11. For a strong heat source (heat generation,
layers regions causing the negative wall gradients of the az-A = 1.5), it is predicted that the fluid temperature in the

imuthal velocity, temperaturand concentration to increase boundary layer region close to the cone surface becomes
resulting in higher azimuthal gkfriction coefficient, Nus- higher than that of the surface. This causes the temperature
selt number and Sherwood number for all times. However, gradient at the surface to become positive and consequently,
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the Nusselt number at = 1 to becomes negative. This will
be seen in the next figures. The effect of increasing or de-
creasing the angular velocity on the temperature profile for
a specific value ofA is seen to be insignificant.

The effect of the heat generation or absorption coefficient
A on the tangential skin-friction coefficie(iRe)l/ZCfx) and

the Nusselt and Sherwood numb ;l/ZNux, Re;l/Zth)

for ¢ (+*) = 1+ er*2, ¢ = +0.2 in the time range & t* < 2
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is displayed in Figs. 12—-14, respectively. The tangential skin-
friction coefficient and the Sherwood number are predicted
to increase while the Nusselt niver is predicted to decrease
with increases in the values &f. The reason for this trend

in the Nusselt number is that the thermal boundary layer in-
creases with increasing values af as mentioned before.
Consequently, the negative temperature gradient and hence
the Nusselt number decreaseth increasing values oft

for all times. As mentioned before, the negative values in the
Nusselt number are due to the fact that, for relatively large
heat generation effects\(= 1 andA = 1.5), the fluid tem-
perature in the boundary layer region close to the cone sur-
face becomes higher than that of the surface. This produces
a positive temperature gradient at the surface and conse-
qguently, the Nusselt number becomes negative. In addition,
increases in the values af produces higher temperatures,
higher induced tangential flow and lower concentration lev-
els. This causes the wall tangential velocity gradient and the
negative concentration gradient at the surface to increase.
This results in increases in the tangential skin-friction coeffi-
cient and Sherwood number. Furthermore, while the angular
velocity is seen to affect the tangential skin-friction coef-
ficient and the Sherwood number significantly for- 0.5,

the Nusselt number is affected only slightly for times greater
than 1.5. These trends are shown in Figs. 12—-14.
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pled nonlinear partial differential equations governing the
thermosolutal mixed convective flow were solved numer-
ically using an implicit, iterative finite-difference scheme.
Comparisons with previously published work were per-
formed and the results were found to be in excellent agree-
ment. It was found that the local tangential and azimuthal
skin-friction coefficients and local Nusselt and Sherwood
numbers increased with time when the angular velocity of
the cone increased, but the reverse trend was observed for
a decreasing angular velocity. However, these were not mir-
ror reflection of each other. Increasing the buoyancy ratio
) 05 10 15 20 was predicted to increase the skin-friction coefficients and
t the Nusselt and Sherwood numbers. Also, increases in the
heat generation or absorption coefficient increased the lo-
cal tangential skin-friction coefficient and Sherwood number
16 and decreased the local Nuksaimber. On the other hand,
144 A=2 - the azimuthal skin-friction coefficient and the Nusselt and
129 A=1 Sherwood numbers increased with the increase in the suc-
(‘)':: tion parameter while the reverse effect was obtained as the
o6 A0 injection parameter was increased.
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