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Abstract

This work is focused on the study of unsteady heat and mass transfer by mixed convection flow over a vertical permeable con
in an ambient fluid with a time-dependent angular velocity in the presence of a magnetic field and heat generation or absorption e
cone surface is maintained at variable temperature and concentration. Fluid suction or injection is assumed to occur at the cone s
coupled nonlinear partial differential equations governing the thermosolutal mixed convective flow have been solved numerically
implicit, iterative finite-difference scheme. Comparisons with previously published work have been conducted and the results are fo
in excellent agreement. A parametric study showing the effects of the buoyancy parameter, suction or injection velocity and heat
or absorption coefficient on the local tangential and azimuthal skin friction coefficients, and the local Nusselt and Sherwood nu
conducted. These are illustrated graphically to depict special features of the solutions. It is found that the local tangential and azimuthal skin
friction coefficients and local Nusselt and Sherwood numbers increase with the time when the angular velocity of the cone incr
the reverse trend is observed for decreasing angular velocity. However, these are not mirror reflection of each other. Increasing th
ratio is predicted to increase the skin-friction coefficients and theNusselt and Sherwood numbers. Also, increases in the heat genera
absorption coefficient increase the local tangential skin-friction coefficient and Sherwood number and decrease the local Nusselt n
the other hand, the azimuthal skin-friction coefficient and the Nusselt and Sherwood numbers increase (decrease) with the incr
suction (injection) parameter.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

The study of flow and (or) heat and mass transfer ove
tating bodies is of considerable interest due its occurrenc
many industrial, geothermal, geophysical, technological
engineering applications. Such a study is important in the
sign of turbines and turbo-machines, in estimating the fl
path of rotating wheels and spin-stabilized missiles an
the modeling of many geophysical vortices. As explained
Takhar et al. [1], when an axisymmetric body rotates i
forced flow field, the fluid near the surface of the body
forced outward in the radial direction due to the action
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the centrifugal force. This fluid is then replaced by the flui
moving in the axial direction. Thus, the axial velocity of t
fluid in the vicinity of a rotating body is more than that of
stationary body. This increase in the axial velocity enhan
the convective heat transfer between the body and the fl
This principle has been used to develop practical system
increasing heat transfer. For example, the utility of rotat
condensers for sea-water distillation and space-craft po
plants in a zero-gravity environment was shown by Hickm
[2]. Ostrach and Braun [3] have investigated the possib
of cooling the nose-cone of re-entry vehicles by spinning
nose. Also, rotating heat exchangers are extensively use
the chemical and automobile industries. Early investigat
of flow and heat transfer in rotating systems are given
Dorffman [4] and Kreith [5].
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Nomenclature

B0 magnetic induction
c concentration
cp specific heat at constant pressure . kJ·kg−1·K−1

cw0 wall concentration at timet∗ = 0
C dimensionless concentration,

= (c − c∞)/(cw − c∞)

Cf x tangential skin friction coefficient,

= −Re−1/2
x φ(t∗)H ′′(0, t∗)

Cfy azimuthal skin friction coefficient,

= −2Re−1/2
x φ(t∗)G′(0, t∗)

D mass diffusivity . . . . . . . . . . . . . . . . . . . . . m2·s−1

E electric field
g gravitational acceleration . . . . . . . . . . . . . . m·s−2

G, H dimensionless similarity velocity functions
GrL Grashof number,

= gβT cosα(Tw − T∞)L3/ν2

Ha2 square of Hartmann number,= σB2
0L2/µ

H0 dimensionless suction or injection velocity,
= w0/[ν(Ω0 sinα)1/2]

k fluid thermal conductivity . . . . . . . W·m−1·K−1

L characteristic length . . . . . . . . . . . . . . . . . . . . . . m
M magnetic parameter,= Ha2/ReL

N buoyancy ratio,= βc(cw − c∞)/[βT (Tw − T∞)]
Nux local Nusselt number,= −Re1/2

x θ ′(0, t∗)
Pr Prandtl number,= ρνcp/k

Q0 dimensional heat generation or absorption
coefficient

ReL Reynolds number,= Ω0L
2 sinα/ν

Rem magnetic Reynolds number,= µ0σV L

Rex local Reynolds number,= Ω0x
2 sinα/ν

Sc Schmidt number,= ν/D

Shx local Sherwood number,= −Re1/2
x C′(0, t∗)

t dimensional time . . . . . . . . . . . . . . . . . . . . . . . . . . s
t∗ dimensionless time,= (Ω0 sinα)t

T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K

Tw0 wall temperature at timet∗ = 0 . . . . . . . . . . . . K
u, v, w velocity components . . . . . . . . . . . . . . . . . . m·s−1

V characteristic velocity . . . . . . . . . . . . . . . . . m·s−1

w0 suction or injection velocity . . . . . . . . . . . m·s−1

x , y , z curvilinear coordinates

Greek symbols

α semi-vertical angle of the cone
βc coefficient of concentration expansion
βT coefficient of thermal expansion
∆ dimensionless heat generation or absorption

coefficient,= Q0/(ρcpΩ0 sinα)

ε a constant used in the continuous function
of time

η similarity variable,= (Ω0 sinα/ν)1/2z

φ(t∗) continuous function
of time

λ buoyancy parameter (Richardson number),
= GrL/Re2

L

µ dynamic viscosity . . . . . . . . . . . . . . . kg·m−1·s−1

µ0 magnetic permeability
ν kinematic viscosity . . . . . . . . . . . . . . . . . . m2·s−1

ρ fluid density . . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

σ electrical conductivity
θ dimensionless temperature,

= (T − T∞)/(Tw − T∞)

Ω angular velocity of the cone . . . . . . . . . . . . . . s−1

Ω0 angular velocity of the cone att = 0 . . . . . . s−1

Subscripts

i initial condition
t , x , z partial derivatives with respect tot , x andz,

respectively
w condition at the wall
∞ condition at free stream
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The problem of forced convection from isothermal a
non-isothermal disks rotating in an ambient fluid was
vestigated by Sparrow and Gregg [6] and Hartnett [7],
spectively. Tien and Tsugi [8], and Koh and Price [9] ha
presented a theoretical analysis of the forced flow and hea
transfer past a rotating cone. The influence of the Pra
number on the heat transfer on rotating non-isothermal d
and cones was investigated by Hartnett and Deland [10].
effect of the axial magnetic field on the flow and heat tra
fer over a rotating disk was considered by Sparrow and C
[11]. Tarek et al. [12] have obtained an asymptotic solut
of the flow problem over a rotating disk with a weak ax
magnetic field. Lee et al. [13] have studied the flow and h
transfer over a rotating body of revolution (sphere). Wa
[14] has investigated the flow and heat transfer on ro
ing cones, disks and axisymmetric bodies with concentr
heat sources. The laminar natural convection from a n
isothermal cone was analyzed by Hering and Grosh
and Roy [16]. An approximate method of solution for t
overall heat transfer from vertical cones in laminar natura
convection was reported by Alamgir [17]. The laminar n
ural convection over a slender vertical frustum of a cone
been studied by Na and Chiou [18,19]. Yih [20] has cons
ered the effects of thermal radiation on natural convectio
about a truncated cone. The similarity solution of the mi
convection from a rotating vertical cone in an ambient fluid
was obtained by Hering and Grosh [21] for Prandtl num
Pr = 0.7 and by Himasekhar et al. [22] for a wide range
Prandtl numbers. Recently, Anilkumar and Roy [23] ha
obtained similarity solutions for the problem of unstea
mixed convection from a rotating vertical cone in a rotat
fluid in the presence of thermal and mass diffusion.
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All of the above studies deal with steady flows. In ma
practical problems, the flow could be unsteady due to the
gular velocity of the spinning body which varies with tim
or due to the impulsive change in the angular velocity of
body. The unsteady boundary layer flow of an impulsive
started translating and spinning rotational symmetric b
has been investigated by Ece [24], who obtained the s
tion for small time. The corresponding heat transfer prob
has been considered by Ozturk and Ece [25]. Takhar e
[26] have solved the problem of unsteady laminar MHD fl
and heat transfer in the stagnation region of an impulsiv
spinning and translating sphere in the presence of buoy
forces. More recently, Roy and Anilkumar [27] have cons
ered the problem of unsteady mixed convection from a
tating cone in a rotating fluid due to the combined effect
thermal and mass diffusion for the conditions of prescri
wall temperature and heat flux.

In this paper, the problem of unsteady heat and m
transfer by mixed convective flow over a rotating verti
permeable cone in the presence of a magnetic field and
generation or absorption effects is considered. This prob
represents a generalization of the problems considered ea
lier by Takhar et al. [1] and Roy and Anilkumar [27] for th
case of prescribed wall temperature. The unsteadiness i
flow field is due to the angular velocity of the cone whi
varies arbitrarily with time. The coupled nonlinear parabo
partial differential equations governing the flow and heat
mass transfer problem have been solved numerically u
an implicit iterative finite-difference scheme.

2. Problem formulation

Consider unsteady, laminar, non-dissipative, cons
property, incompressible boundary-layer heat and m
transfer by mixed convective axisymmetric flow of
electrically-conducting and heat generating or absorb
fluid over a heated vertical permeable cone rotating in an am
bient fluid with time-dependent angular velocity,Ω(t∗) =
Ω0φ(t∗), t∗ = (Ω0 sinα)t , around the axis of the cone. Un
form fluid suction or injection with velocityw0 is assumed
to occur at the cone surface. A uniform magnetic field
strengthB0 is applied in thez-direction (normal direction
and the gravitational accelerationg acts downward paralle
to the axis of the cone. The physical model and the coo
nate system are shown in Fig. 1. The rectangular curvilin
fixed coordinate system(x, y, z), wherex is measured alon
a meridional section, they-axis is along a circular section
and thez-axis is normal to the cone surface have been
ployed. Letu, v andw be the velocity components along t
x (tangential),y (circumferential or azimuthal) andz (nor-
mal) directions, respectively. The wall temperatureTw and
wall concentrationcw are assumed to vary linearly with th
distancex and the ambient temperature(T∞) and concen-
tration(c∞) are constant. The cone surface is assumed t
electrically-insulated. The magnetic Reynolds number is
t

e

Fig. 1. Physical model and coordinate system.

sumed to be small(Rem = µ0σV L � 1 whereµ0 andσ are
the magnetic permeability and the electrical conductiv
andV andL are the characteristic velocity and length,
spectively). Under this condition, it is possible to neglect
induced magnetic field in comparison to the applied m
netic field. Since there is no applied or polarization volta
imposed on the flow field, the electric field�E = 0. Hence,
Maxwells’ equations are uncoupled from the Navier–Sto
equations (see Cramer and Pai [28]) and the only contr
tion of the magnetic field is the Lorentz force in the abse
of the Hall effect. Under the above assumptions and u
the Boussinesq approximation, the boundary-layerequa
governing this heat and mass transfer convective flow on
rotating cone [8,11,22] are given by

ux + x−1u + wz = 0 (1)

ut + uux + wuz − v2/x

= νuzz + gβT cosα(T − T∞)

+ gβc cosα(c − c∞) − σB2
0u/ρ (2)

vt + uvx + wvz + uv/x = νvzz − σB2
0v/ρ (3)

Tt + uTx + wTz = (ν/Pr)Tzz + Q0/(ρcp)(T − T∞) (4)

ct + ucx + wcz = Dczz (5)

The initial conditions are given by the steady-state eq
tions:

u(x, z,0) = ui(x, z)

v(x, z,0) = vi(x, z), w(x, z,0) = wi(x, z)

T (x, z,0) = Ti(x, z), c(x, z,0) = ci(x, z) (6)

The boundary conditions for this problem are given by

u(x,0, t) = 0

w(x,0, t) = w0, v(x,0, t) = Ω0x sinαφ
(
t∗

)

T (x,0, t) = Tw(x), c(x,0, t) = cw(x)

u(x,∞, t) = v(x,∞, t) = 0, T (x,∞, t) = T∞
c(x,∞, t) = c∞
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u(∞, z, t) = v(∞, z, t) = 0, T (∞, z, t) = T∞
c(∞, z, t) = c∞, z > 0 (7)

HereT is the temperature;c is the concentration;βT is the
coefficient of the thermal expansion;βc is the coefficient of
the concentration expansion;α is the semi-vertical angle o
the cone;ν is the kinematic viscosity;cp is the specific hea
at constant pressure,ρ is the density of the fluid;t and t∗
(t∗ = Ω0t) are the dimensional and dimensionless times
spectively;Ω0 is the angular velocity of the cone att = 0;
Pr is the Prandtl number;D is the mass diffusivity,Q0 is the
dimensional heat generation or absorption coefficient;φ(t∗)
is a continuous function having continuous first-order de
ative; the subscriptst , x andz denote partial derivatives wit
respect tot , x andz, respectively; the subscripti denotes ini-
tial conditions; and the subscriptsw and∞ denote wall and
ambient conditions, respectively.

It is convenient to transform Eqs. (1)–(5) into the(η, t∗)
system by applying the following transformations;

η = (Ω0 sinα/ν)1/2z, t∗ = (Ω0 sinα)t

u(x, z, t) = −2−1(Ω0 sinα)H ′(η, t∗
)
φ
(
t∗

)

v(x, z, t) = (Ω0x sinα)G
(
η, t∗

)
φ
(
t∗

)

w(x, z, t) = ν(Ω0 sinα)1/2H
(
η, t∗

)
φ
(
t∗

)

T (x, z, t) − T∞ = (Tw − T∞)θ
(
η, t∗

)

Tw − T∞ = (Tw0 − T∞)x/L

c(x, z, t) − c∞ = (cw − c∞)C
(
η, t∗

)

cw − c∞ = (cw0 − c∞)x/L

GrL = gβT cosα(Tw − T∞)L3/ν2

ReL = Ω0L
2 sinα/ν, λ = GrL/Re2

L

N = βc(cw − c∞)/
[
βT (Tw − T∞)

]

M = Ha2/ReL, Sc = ν/D

Ha2 = σB2
0L2/µ, ∆ = Q0/(ρcpΩ0 sinα) (8)

whereTw0 andcw0 the wall temperatureand concentration a
time t∗ = 0, respectively. With these transformations, Eq.
is identically satisfied and Eqs. (2)–(5) reduce to the follo
ing system of equations,

H ′′′ − φHH ′′ + 2−1φ
(
H ′)2 − 2φG2

− 2φ−1λ(θ + NC) − MH ′

− φ−1(dφ/dt∗
)
H ′ − ∂H ′/∂t∗ = 0 (9)

G′′ − φ
(
HG′ − H ′G

) − MG − ∂G/∂t∗ = 0 (10)

θ ′′ − Pr
(
Hθ ′ − 2−1H ′θ

)
φ + Pr∆θ − Pr∂θ/∂t∗ = 0 (11)

C′′ − Sc
(
HC′ − 2−1H ′C

)
φ − Sc∂C/∂t∗ = 0 (12)

The boundary conditions (7) can be rewritten as

H
(
0, t∗

) = H0/φ
(
t∗

)
, H ′(0, t∗

) = 0

G
(
0, t∗

) = θ
(
0, t∗

) = C
(
0, t∗

) = 1

H ′(∞, t∗
) = G

(∞, t∗
) = θ

(∞, t∗
) = C

(∞, t∗
) = 0 (13)
whereH0 = w0/[ν(Ω0 sinα)1/2] is the dimensionless suc
tion or injection velocity. Eqs. (9)–(13) reduce to those
Takhar et al. [1] when Eq. (12) is ignored andH0 = N =
∆ = 0. Also, they reduce to those reported by Roy a
Anilkumar [27] for the case of prescribed wall temperat
(with α1 = 1) whenH0 = M = ∆ = 0.

The initial conditions (i.e., conditions att∗ = 0) are
given by the steady state equations obtained from (9)–
by puttingφ = 1, dφ/dt∗ = ∂H ′/∂t∗ = ∂G/∂t∗ = 0 when
t∗ = 0. The steady-state equations are

H ′′′ − HH ′′ + 2−1(H ′)2 − 2G2

− 2λ(θ + NC) − MH ′ = 0 (14)

G′′ − (
HG′ − H ′G

) − MG = 0 (15)

θ ′′ − Pr
(
Hθ ′ − 2−1H ′θ

) + Pr∆θ = 0 (16)

C′′ − Sc
(
HC′ − 2−1H ′C

) = 0 (17)

with boundary conditions

H(0) = H0, H ′(0) = 0, G(0) = θ(0) = C(0) = 1

H ′(∞) = G′(∞) = θ(∞) = C(∞) = 0 (18)

Hereη andt∗ are the transformed coordinates;H ′, G and
H are the dimensionless velocity components along the
gential, azimuthal and normal directions, respectively;θ is
the dimensionless temperature;C is the dimensionless con
centration;GrL is the Grashof number;ReL is the Reynolds
number;λ is the dimensionless buoyancy parameter;N is
the buoyancy ratio such thatN < 0 corresponds to opposin
flow while N > 0 corresponds to aiding flow;M is the di-
mensionless magnetic parameter;Ha2 is the Hartmann num
ber; ∆ is the dimensionless heat generation or absorp
coefficient;L is the characteristic length;Sc is the Schmidt
number;µ is the coefficient of viscosity; and a prime deno
a derivative with respect toη.

It may be remarked that the steady-state equations (
(16) in the absence of all of the magnetic field(M = 0),
buoyancy ratio(N = 0) and heat generation or absorpti
effects(∆ = 0) are identical to those of Himasekhar et
[22] if we replaceH ′ by −2F andλ by Gr/Re2. Further-
more, Eqs. (14)–(16) in the absence of the buoyancy and
generation or absorption effects (λ = 0, ∆ = 0) and for con-
stant wall temperature case are the same as those of Sp
and Cess [11] if the termPr H ′θ/2, which is the contribu
tion due to the linear variation of the wall temperature w
the distancex is omitted.

Of special interest for this problem are the local skin fr
tion coefficients in the tangential and azimuthal directio
the local Nusselt number and the local Sherwood num
These physical quantities are respectively given by

Cf x = 2µ(∂u/∂z)z=0/
[
ρ(Ω0x sinα)2]

= −Re−1/2
x φ

(
t∗

)
H ′′(0, t∗

)

Cfy = −2µ(∂v/∂z)z=0/
[
ρ(Ω0x sinα)2]

= −2Re−1/2
x φ

(
t∗

)
G′(0, t∗

)
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Nux = −x(∂T /∂z)z=0/(Tw − T∞) = −Re1/2
x θ ′(0, t∗

)

Shx = −x(∂c/∂z)z=0/(cw − c∞) = −Re1/2
x C′(0, t∗

)
(19)

whereRex = Ω0x
2 sinα/ν is the local Reynolds number.

3. Numerical method

The coupled nonlinear parabolic partial differential eq
tions (9)–(12) under boundary conditions (13) and ini
conditions (14)–(18) have been solved numerically using
implicit, iterative tri-diagonal finite-difference scheme sim
lar to that discussed by Blottner [29]. All first-order deriv
tives with respect tot∗ are replaced by two-point backwa
difference formulae of the form

∂R/∂t∗ = (Ri,j − Ri−1,j )/∆t∗ (20)

whereR represents the dependent variablesH or G or θ

or C and i andj are node locations in thet∗ andη direc-
tions, respectively. First, the third-order partial differen
equation (9) is converted into a second-order partial diffe
tial equation by substitutingH ′ = N . Then the second-orde
partial differential equations forN , G, θ and C are dis-
cretized using three-point central difference formulae, while
first-order derivatives with respect toη are discretized by
employing the trapezoidalrule. At each line of constantt∗,
a system of algebraic equations is obtained. The nonli
terms of these equations are evaluated at the previous
ation and the system of algebraic equations is then so
with iteration by using the well-known Thomas algorith
(see Blottner [29]). The same procedure is repeated fo
nextt∗ value and the problem is solved line by line until t
desiredt∗ value is reached. A convergence criterion ba
on the relative difference between the current and prev
iterations is employed. When this difference reaches 10−5,
the solution is assumed to have converged and the iter
process is terminated.

4. Results and discussion

In this section, numerical results for the velocity, temp
ature and concentration profiles as well as the local skin fric
tion coefficients in the tangential and azimuthal directio
the local Nusselt number and the local Sherwood num
based on the finite-difference methodology discussed
lier are presented and/or discussed for various values o
physical parameters. The results have been obtained for
increasing and decreasing angular velocities[φ(t∗) = 1 +
εt∗2, ε = ±0.2, 0� t∗ � 2] for several values of the buoy
ancy ratioN (−0.5 � N � 5), the dimensionless suctio
or injection velocityH0 (−3 � H0 � 3), and dimensionles
heat generation or absorption coefficient∆ (−2� ∆ � 1.5).
The influence of the other physical parameters involve
the problem were presented earlier by Takhar et al. [1] in
-

Fig. 2. Effect onN on velocity profiles−H ′(η, t∗).

absence of mass transfer, surface transpiration and hea
eration or absorption effects. For brevity and page limitat
the effect of these parameters (λ, M andPr) on the solutions
will not be repeated herein.

In order to assess the accuracy of the numerical met
the present results were compared with the steady-stat
sults for the surface shear stresses in the tangential
azimuthal directions[−H ′′(0),−G′(0)], and the surface
heat transfer[−θ ′(0)] in the absence of the magne
field (M = 0), mass transfer(N = 0), surface transpira
tion (H0 = 0) and heat generation or absorption(∆ = 0)

with those of Himasekhar et al. [22] and found to be
excellent agreement. This comparison is given in Table 1
In addition, the surface shear stresses and heat tra
[−H ′′(0),−G′(0),−θ ′(0)], and ambient velocity−H(∞)

for the steady-state case in the absence of buoyancy e
(λ = 0) and withH0 = 0 and∆ = 0 were compared with
those given by Sparrow and Cess [11] and the results w
found to be in very good agreement. These comparison
shown in Tables 2 and 3.

Fig. 2 displays representative profiles for the tangen
velocity [−H ′(η, t∗)] for various values of the buoyanc
ratio N for both increasing and decreasing angular ve
ities [φ(t∗) = 1 + εt∗2, ε = ±0.2] whenH0 = 0, M = 1,
λ = 1, Pr = 0.78,Sc = 0.6, ∆ = 0, andt∗ = 1, respectively.
It should be noted that the curve forN < 0 corresponds
to opposing flow while those forN > 0 correspond to aid
ing flow. As expected, increases in the buoyancy ratio
solutal buoyancy effect) cause an increase in the buoya
induced flow along and normal to the cone and decre
in circumferential flow and the thermal and solutal le
within the boundary layer for all times. Physically spea
ing, as the cone rotates, the fluid near the surface of
cone is forced outward along the tangential direction
to the action of the centrifugal force. This fluid is then
placed by the fluid moving in the normal direction. Thu
there is a close relationship between the tangential and
mal velocities. As the solutal buoyancy effects increase,
outflow (tangential) velocityH ′ increases. This causes mo
normal flow towards the cone resulting in an increase in
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Table 1
Comparison of heat transfer and surface shear stresses[−θ ′(0), −G′(0), −H ′′(0)] for t∗ = M = N = H0 = ∆ = 0

Pr Present results Himasekhar et al. [22]

λ = 0 λ = 1 λ = 10 λ = 0 λ = 1 λ = 10

0.7 −θ ′(0) 0.4299 0.6121 1.0099 0.4299 0.6120 1.0097
0.7 −G′(0) 0.6158 0.8497 1.3992 0.6158 0.8496 1.3990
0.7 −H ′′(0) 1.0255 2.2014 8.5045 1.0256 2.2012 8.5041
2.0 −θ ′(0) 0.7001 0.9020 1.4477 0.7002 0.9018 1.4475
2.0 −G′(0) 0.6158 0.7697 1.2383 0.6158 0.7696 1.2381
2.0 −H ′′(0) 1.0255 1.9423 7.2035 1.0256 1.9421 7.2030

10 −θ ′(0) 1.4111 1.5663 2.3583 1.4110 1.5662 2.3580
10 −G′(0) 0.6158 0.6838 0.9841 0.6158 0.6837 0.9840
10 −H ′′(0) 1.0255 1.5638 5.0825 1.0256 1.5636 5.0821

100 −θ ′(0) 0.8522 2.9220 4.3013 2.8520 2.9218 4.3010
100 −G′(0) 0.6158 0.6289 0.7376 0.6158 0.6288 0.7374
100 −H ′′(0) 1.0255 1.2229 2.9488 1.0256 1.2227 2.9486

Table 2
Comparison of surface shear stresses[−H ′′(0),−G′(0)] and ambient velocity[−H(∞)] for t∗ = H0 = λ = ∆ = 0

M Present results Sparrow and Cess [11]

−H ′′(0) −G′(0) −H(∞) −H ′′(0) −G′(0) −H(∞)

0 1.0207 0.6159 0.8848 1.021 0.616 0.885
0.5 0.773 0.8488 0.4587 0.770 0.849 0.459
1 0.6194 1.0692 0.2531 0.619 1.069 0.253
2 0.4613 1.4418 0.1088 0.461 1.442 0.109
3 0.3813 1.7477 0.0617 0.381 1.748 0.0618
4 0.3308 2.0097 0.0406 0.331 2.010 0.0408

Table 3
Comparison of surface heat transfer[−θ ′(0)] for t∗ = H0 = λ = ∆ = 0

Pr Present results Sparrow and Cess [11]

M = 0.1 M = 1 M = 10 M = 0.1 M = 1 M = 10

0 0.0763 0.3958 1.1337 0.0766 0.396 1.134
0.5 0.0426 0.2819 0.9558 0.0428 0.282 0.956
1 0.0282 0.1939 0.8011 0.0244 0.194 0.801
2 0.0107 0.0981 0.5712 0.0108 0.0982 0.571
3 0.00612 0.0587 0.4218 0.00614 0.0588 0.422
4 0.00406 0.0344 0.3181 0.00407 0.0395 0.318
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normal velocityH . The increase in the tangential and n
mal velocities asN increases is followed by simultaneo
decreases in the azimuthal velocityG, temperatureθ and
concentrationC since the velocitiesH andH ′ act as a op-
posing mechanisms as seen from Eqs. (10)–(12). The ef
of decreasing the angular velocity of the cone is see
increase the flow velocities significantly with insignifica
effect on both the temperature and concentration att∗ = 1.
The behaviors regarding the tangential velocity are cle
shown in Fig. 2 while the trends of the normal and azimut
velocities[−H(η, t∗),G(η, t∗)], temperature[θ(η, t∗)] and
concentration[C(η, t∗)] were observed from other resu
not presented here for brevity.

Figs. 3–6 illustrate the effects of the buoyancy ratioN on
the local skin friction coefficients in the tangential and
imuthal directions(Re1/2

x Cf x , 2−1Re1/2
x Cfy), the local Nus-

selt number(Re−1/2
x Nux) and the local Sherwood numb
s

(Re−1/2
x Shx) for increasing and decreasing angular velo

ties [φ(t∗) = 1 + εt∗2, ε = ±0.2] when H0 = 0, M = 1,
λ = 1, Pr = 0.78,Sc = 0.6, ∆ = 0, 0� t∗ � 2, respectively.
The effect of the time variation is more pronounced for la
t∗ (t∗ > 1). For a fixed value ofN , the local skin friction co-
efficients, the local Nusselt number and the local Sherw
number increase with an increasing angular velocity, but
reverse trend is predicted for a decreasing angular ve
ity. However, these are not a mirror reflection of each ot
The skin-friction coefficients and the Nusselt and Sherw
numbers are found to be strongly dependent onN for all t∗.
The skin-friction coefficients in the tangential and azimut
directions(Re1/2

x Cfx , 2−1Re1/2
x Cfy) and the Nusselt an

Sherwood numbers(Re−1/2
x Nux , Re−1/2

x Shx) increase with
increasing values ofN . Inspection of Fig. 2 shows clear
that the gradient of the velocity in the tangential direct
and hence, the skin-friction coefficient in the tangential



A.J. Chamkha, A. Al-Mudhaf / International Journal of Thermal Sciences 44 (2005) 267–276 273

d
dary
ses
m-
tion
nd

r ve-

ent

az-

f
ry
az-
e

ver,

ase
ffi-

ng
ry

duc-
ts
en-
of

ab-
th

has
aus-
ase.
t,
d its
evi-
tion,
he
mes
ature
ntly,
Fig. 3. Effect onN on Re1/2
x Cf x .

Fig. 4. Effect onN on 0.5Re1/2
x Cfy .

rection increases with increasing values ofN . Also, as men-
tioned before, all of the azimuthal velocity, temperature an
concentration are reduced everywhere and their boun
layers become thinner asN increases. This causes increa
in the negative wall gradients of the azimuthal velocity, te
perature and concentration and, hence, in the skin-fric
coefficient in the azimuthal direction, Nusselt number a
Sherwood number. The effect of decreasing the angula
locity of the cone is seen to cause reductions in all ofCf x ,
Cfy , Nux andShx due to the decreases in the wall gradi
of H and negative wall gradients ofG, θ andC. These and
all previous trends are obvious from Figs. 3–6.

The effect of the suction or injection parameterH0 on
the local skin friction coefficients in the tangential and
imuthal directions (Re1/2

x Cf x , 2−1Re1/2
x Cfy ) and the local

Nusselt and Sherwood numbers (Re−1/2
x Nux , Re−1/2

x Shx ) is
presented in Figs. 7–10 forφ(t∗) = 1 + εt∗2, ε = ±0.2,
M = 1, N = 1, Pr = 0.78, Sc = 0.6, λ = 1 and ∆ = 0
in the time range 0� t∗ � 2, respectively. Imposition o
fluid wall suction(H0 < 0) tends to decrease the bounda
layers regions causing the negative wall gradients of the
imuthal velocity, temperatureand concentration to increas
resulting in higher azimuthal skin-friction coefficient, Nus-
selt number and Sherwood number for all times. Howe
Fig. 5. Effect onN on Re−1/2
x Nux .

Fig. 6. Effect onN on Re−1/2
x Shx .

the wall gradient of the tangential velocity tends to decre
yielding a net decrease in the tangential skin-friction coe
cient for all times. On the other hand, injection or blowi
of fluid (H0 > 0) from the cone surface into the bounda
layer cause the different boundary layers to stretch pro
ing lower tangential and azimuthal skin-friction coefficien
and Nusselt and Sherwood numbers for all times. As m
tioned before, the effect of reducing the angular velocity
the cone results in significant reductions inCf x andCfy and
slight reductions inNux andShx for timest∗ > 1. These fea-
tures are clear from Figs. 7–10.

Fig. 11 presents the effect of the heat generation or
sorption coefficient∆ on the temperature profiles for bo
increasing and decreasing angular velocities att∗ = 1. Phys-
ically speaking, the presence of heat generation effects
the tendency to increase the thermal state of the fluid c
ing its temperature and thermal boundary layer to incre
On the other hand, when heat absorption effects are presen
the reverse trends where both the fluid temperature an
thermal boundary layer decrease are produced. This is
dent from Fig. 11. For a strong heat source (heat genera
∆ = 1.5), it is predicted that the fluid temperature in t
boundary layer region close to the cone surface beco
higher than that of the surface. This causes the temper
gradient at the surface to become positive and conseque
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Fig. 7. Effect onH0 on Re1/2
x Cf x .

Fig. 8. Effect onH0 on 0.5Re1/2
x Cfy .

Fig. 9. Effect onH0 on Re−1/2
x Nux .

the Nusselt number att∗ = 1 to becomes negative. This w
be seen in the next figures. The effect of increasing or
creasing the angular velocity on the temperature profile
a specific value of∆ is seen to be insignificant.

The effect of the heat generation or absorption coeffic
∆ on the tangential skin-friction coefficient(Re1/2

x Cf x) and

the Nusselt and Sherwood numbers(Re−1/2
x Nux,Re−1/2

x Shx)

for φ(t∗) = 1+ εt∗2, ε = ±0.2 in the time range 0� t∗ � 2
Fig. 10. Effect onH0 on Re−1/2
x Shx .

Fig. 11. Effect of∆ on temperature profilesθ(η, t∗).

is displayed in Figs. 12–14, respectively. The tangential s
friction coefficient and the Sherwood number are predic
to increase while the Nusselt number is predicted to decreas
with increases in the values of∆. The reason for this tren
in the Nusselt number is that the thermal boundary laye
creases with increasing values of∆ as mentioned before
Consequently, the negative temperature gradient and h
the Nusselt number decreaseswith increasing values of∆
for all times. As mentioned before, the negative values in
Nusselt number are due to the fact that, for relatively la
heat generation effects (∆ = 1 and∆ = 1.5), the fluid tem-
perature in the boundary layer region close to the cone
face becomes higher than that of the surface. This prod
a positive temperature gradient at the surface and co
quently, the Nusselt number becomes negative. In addi
increases in the values of∆ produces higher temperature
higher induced tangential flow and lower concentration l
els. This causes the wall tangential velocity gradient and
negative concentration gradient at the surface to incre
This results in increases in the tangential skin-friction coe
cient and Sherwood number. Furthermore, while the ang
velocity is seen to affect the tangential skin-friction co
ficient and the Sherwood number significantly fort∗ > 0.5,
the Nusselt number is affected only slightly for times grea
than 1.5. These trends are shown in Figs. 12–14.
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Fig. 12. Effect of∆ on Re1/2
x Cf x .

Fig. 13. Effect of∆ on Re−1/2
x Nux .

Fig. 14. Effect of∆ on Re−1/2
x Shx .

5. Conclusions

The problem of unsteady heat and mass transfer by m
convection flow over a vertical permeable cone rotating in
ambient fluid with a time-dependent angular velocity in
presence of a magnetic field and heat generation or ab
tion effects was studied. The cone surface was maintaine
at variable temperature and concentration. Fluid suction o
injection was assumed to occur at the cone surface. The
-

-

pled nonlinear partial differential equations governing
thermosolutal mixed convective flow were solved num
ically using an implicit, iterative finite-difference schem
Comparisons with previously published work were p
formed and the results were found to be in excellent ag
ment. It was found that the local tangential and azimu
skin-friction coefficients and local Nusselt and Sherwo
numbers increased with time when the angular velocity
the cone increased, but the reverse trend was observe
a decreasing angular velocity. However, these were not
ror reflection of each other. Increasing the buoyancy r
was predicted to increase the skin-friction coefficients
the Nusselt and Sherwood numbers. Also, increases in
heat generation or absorption coefficient increased the
cal tangential skin-friction coefficient and Sherwood num
and decreased the local Nusselt number. On the other hand
the azimuthal skin-friction coefficient and the Nusselt a
Sherwood numbers increased with the increase in the
tion parameter while the reverse effect was obtained as
injection parameter was increased.
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