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This work considers the problem of steady natural convection hydromagnetic flow of a particulate sus-
pension through an infinitely long channel in the presence of heat generation or absorption effects.
The channel walls are maintained at isoflux–isothermal condition. That is, the thermal boundary condi-
tions are such that one of the channel walls is maintained at constant heat flux while the other is main-
tained at a constant temperature. Various closed-form solutions of the governing equations for different
special cases are obtained. A parametric study of the physical parameters involved in the problem is done
to illustrate the influence of these parameters on the velocity and temperature profiles of both phases.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Natural convection flow of a two-phase (fluid/particle) suspen-
sion represents one of the most interesting and challenging areas
of research in heat transfer. Such flows are found in a wide range
of applications including processes in the chemical and food indus-
tries, solar collectors where a particulate suspension is used to en-
hance absorption of radiation, cooling of electronic equipments,
and cooling of nuclear reactors. Very little work has been done
on natural convection for a two-phase particulate suspension.
Most work on natural convection flows within vertical parallel-
plate channels are done only for a single phase. The evolution of
cooling technology includes the progressive research of using nat-
ural convection, which is an inexpensive mode of heat transfer in
electronic equipments cooling. Vertical plates and channels are of
the most encountered configurations used in natural convection
cooling of electronic equipment.

A literature review in general for the historical papers reported
in the development of cooling technology for electronic equip-
ments has been presented by Bergles [6]. Later, an extensive re-
view of electronic equipment cooling by different modes of heat
transfer has been presented by Incorpera [9]. The review includes
natural convection heat transfer in parallel channels, inclined
channels and enclosures as well as other configurations with
different operating conditions. The importance of heat transfer
ll rights reserved.

ha).
considerations in the design of electronic equipment has been
studied extensively and reported by Aung and Chaimah [4], Jaluria
[10], Kraus and Bar-Cohen [12], and Steinberg [17].

Akbari and Borgers [1] studied free convection laminar heat
transfer between the channel surfaces of the Trombe wall. The
study was done using a line-by-line forward marching implicit fi-
nite-difference technique. The study was restricted to laminar flow
between two parallel plates, each at some effective uniform tem-
perature. Yao [18] investigated the problem of mixed convection
in vertical channel. An analytical solution is developed to study
the hydrodynamically and thermally developing laminar flow in
a heated channel. The transient effects in natural convection cool-
ing of vertical parallel plates are reported by Joshi [11]. Aung [3]
considered fully developed laminar free convection between verti-
cal plates heated asymmetrically. Aung et al. [5] reported on the
development of laminar free convection between vertical flat
plates with asymmetric heating. A more detailed reference list
was given by Muhanna [14] who investigated numerically laminar
natural convection flows in obstructed vertical channels. Related
references for natural and mixed convection flows of a single phase
are given in the book by Gebhart et al. [8].

On the other hand, very little work has been reported on natural
convection flow of a particle–fluid suspension over and through
different geometries. Chamkha and Ramadan [7] and Ramadan
and Chamkha [16] have reported some analytical and numerical
results for natural convection flow of a two-phase particulate
suspension over an infinite vertical plate. Also, Okada and Suzuki
[15] have considered buoyancy-induced flow of a two-phase
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Nomenclature

B
*

magnetic induction
c fluid-phase specific heat at constant pressure
cp particle-phase specific heat at constant pressure
g
*

gravitational acceleration
Gr Grashof number
h channel width
H dimensionless buoyancy parameter
k fluid-phase thermal conductivity
M Hartmann number
N interphase momentum transfer coefficient
NT interphase heat transfer coefficient
P fluid-phase hydrostatic pressure
Pr fluid-phase Prandtl number
Q heat generation/absorption coefficient
q1 wall heat flux
rqt walls thermal ratio
T fluid-phase temperature
Tp particle-phase temperature

u fluid-phase dimensionless velocity
up particle-phase dimensionless velocity
U fluid-phase velocity
Up particle-phase velocity
x, y cartesian coordinates

Greek symbols
a velocity inverse Stokes number
c specific heat ratio
e temperature inverse Stokes number
g dimensionless y-coordinate
h dimensionless fluid-phase temperature
j particle loading
l fluid-phase dynamic viscosity
q fluid-phase density
qp particle-phase density
r fluid-phase electrical conductivity
/ dimensionless heat generation/absorption coefficient
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suspension in an enclosure. Al-Subaie and Chamkha [2] performed
an analytical study dealing with natural convection flow of a par-
ticulate suspension through a vertical channel with isothermal
walls. However, the present authors were unable to locate any the-
oretical or experimental work in the literature dealing with natural
convection laminar flow of a particulate suspension in isoflux–iso-
thermal vertical channels. This is the objective of the present work.
In the formulation of the general problem, magnetic effects which
affect the flow if the fluid is electrically conducting and heat gen-
eration or absorption effects which are important in situations
where a heat source or sink may be placed within the flow are
included.
 g 

x

y 

Particulate Suspension 

h

T2q1 

B 

Fig. 1. Schematic of the problem.
2. Problem formulation

Consider steady, laminar, natural convection flow of a particu-
late suspension in a vertical parallel-plate channel. The channel
walls are maintained at the isoflux–isothermal condition. The
schematic of the problem is shown in Fig. 1. The fluid phase is as-
sumed to be Newtonian, viscous, electrically conducting, and heat
generating or absorbing. The particle phase is assumed to be made
up of discrete particles of one size and constant density. The parti-
cle phase is assumed to be pressure-less and electrically non-con-
ducting. Both phases are assumed to be interacting continua. The
governing equations for this investigation are based on the balance
laws of mass, linear momentum and energy for both the fluid and
particle phases. For small volume fraction of particles [13], they
can be written in vector form as

r
*

� qV
*

� �
¼ 0 ð1Þ

q V
*

�r
*

V
*

¼ �r
*

P þr
*

� lr
*

V
*

� �
� qpN Vp

*

�V
*

� �

þ q g
*
þrðV

*

� B
*

Þ � B
*

ð2Þ

qc V
*

�r
*

T ¼ r
*

� kr
*

T
� �

þ qpcpNT Tp � T
� �

� Q T � Toð Þ ð3Þ

r
*

� qpVp

� �
¼ 0 ð4Þ

qp Vp

*

�r
*

Vp

*

¼ qpNðVp

*

�V
*

Þ þ qp g
*

ð5Þ

qpcp V
*

�r
*

Tp ¼ �qpcpNTðTp � TÞ ð6Þ
where V
*

and Vp

*

are the velocity vectors of the fluid and particle
phases, respectively. T and Tp are the temperatures of the fluid
and particle phases, respectively. g

*
is the gravity vector, r

*

P is the
pressure gradient vector, To is the temperature at a reference point
‘‘o” in the channel, B

*

is the magnetic induction vector and Q is the
heat generation or absorption coefficient depending on its sign.
The other parameters, namely, q, l, r, c and k are the density, dy-
namic viscosity, electrical conductivity, specific heat and thermal
conductivity of the fluid phase, while, qp and cp are the particle-
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phase density and specific heat, respectively. It should be men-
tioned that in the previous equations, the terms containing the
momentum transfer coefficient N represent the interphase drag be-
tween the phases while the terms containing the heat transfer coef-
ficient NT represent the interphase heat transfer between the fluid
and the particle phases.

Evaluating the governing equations at a reference point ‘‘o” at
the channel inlet such that V

*

¼ 0; T ¼ To; q ¼ qo; l ¼ lo;

r ¼ ro;Vp

*

¼ Vpo

*

; Tp ¼ Tpo; and qp ¼ qpo yields

� Fluid-phase momentum equation
0 ¼ �r
*

P � qpoN 0� Vpo

*
� �

þ qo g
*

ð7Þ

Rearranging Eq. (7) yields

�r
*

P ¼ qpoN 0� Vpo

*
� �

� qo g
*

ð8Þ

� Fluid-phase energy equation becomes

qpocpoNTðTpo � ToÞ ¼ 0 ð9Þ

which gives Tpo ¼ To.

� Particle-phase momentum equation

qpoN 0� Vpo

*
� �

¼ �qpo g
*

ð10Þ

� Particle-phase energy equation:

0 ¼ �qpocpoNTðTpo � ToÞ ð11Þ

which also yields Tpo ¼ To.
Substituting Eq. (10) into (8) gives

�r
*

P ¼ �qpo g
*
�qo g

*
ð12Þ

By assuming that all properties of the suspension are constant
(except the fluid density in the buoyancy term of the fluid-phase
linear momentum equation) the Boussinesq approximation can
be adequately employed. Using Eq. (12), eliminating the pressure
gradient from the fluid-phase momentum equation and employing
the Boussinesq approximation gives:

V
*

:r
*

V
*

¼ �
qpo

qo
g
*
þlo

qo
r
*

:r
*

V
*

�
qpo

qo
N V

*

�Vp

*
� �

� b� T � Toð Þ g
*
þ ro

qpo
V
*

� B
*

� �
� B

*

ð13Þ

where b* is the volumetric expansion coefficient. The linear momen-
tum equation of the fluid phase, Eq. (2), will be replaced now by Eq.
(13) in the governing equations.

The walls of the channel are assumed to be infinitely long. This
implies that the dependence of the variables on the x-direction will
be negligible compared with that of the y-direction (see Fig. 1).
Therefore, all dependent variables in Eqs. (3)–(6) and (12) will only
be functions of y as follows:

V
*

¼ UðyÞ ex
*
; Vp

*

¼ UpðyÞ ex
*

ð14a;bÞ

T ¼ TðyÞ; Tp ¼ TpðyÞ ð14c;dÞ

where U(y) is the fluid phase x-component of velocity, Up(y) is the
particle-phase x-component of velocity, T(y) and Tp(y) are the fluid
phase and particle-phase temperatures, respectively and ex
*

is the
unit vector in the x-direction. These assumptions also imply that
the constant vector g

*
will be reduced to g ex

*
which is the magnitude

of the acceleration due to gravity component in the x-direction.
Also, assuming that the fluid is electrically-conducting and is sub-
jected to a uniform transverse magnetic field which is applied nor-
mally to the flow direction (see Fig. 1), the electromotive force
rV

*

� B
*

in Eq. (13) will provide a current whose interaction with B
*

will decelerate the flow. This implies that

r V
*

� B
*

� �
� B

*

¼ �rB2UðyÞ ex
*

ð15Þ

where B
*

is the magnitude of magnetic induction. Taking all of the
above assumptions into account, the governing equations of the
infinite parallel-plate channel can be rewritten as follows:

lo@yyU � qpoNðU � UpÞ � roB2U þ b�qogðT � ToÞ þ qpog ¼ 0 ð16Þ
k@yyT þ qpcpNTðTp � TÞ � QðT � ToÞ ¼ 0 ð17Þ
qpNðU � UpÞ � qpg ¼ 0 ð18Þ
Tp � T ¼ 0 ð19Þ

It should be noted that the continuity equations of both phases
are identically satisfied.

The physical boundary conditions for this problem are:

Uð0Þ ¼ UðhÞ ¼ 0 ð20a;bÞ

@T
@y
ð0Þ ¼ � q1

k
; TðhÞ ¼ T2 ð20c;dÞ

where h is the channel width, T2 is the channel temperature at y = h,
q1 is the wall heat flux at y = 0.

Substituting the following parameters:

y ¼ hg; U ¼ l
qh

u; Up ¼
l
qh

up; T ¼ q1h
k

hþ To;

Tp ¼
q1h

k
hp þ To ð21Þ

into Eqs. (16)–(19) gives the following dimensionless equations:

@ggu� ajðu� upÞ �M2uþ Grhþ jH ¼ 0 ð22Þ
1
Pr
@gghþ jceðhp � hÞ � /h ¼ 0 ð23Þ

aðu� upÞ � H ¼ 0 ð24Þ
hp � h ¼ 0 ð25Þ

where

a ¼ h2 Nq
l
; j ¼

qp

q
; Gr ¼ b�q1h4q2g

jl2 ; M2 ¼ rB2h2

l
;

H ¼ q2h3g
l2 ; Pr ¼ lc

j
; c ¼ cp

c
; e ¼ qNT h2

l
; / ¼ Qh2

lc
ð26Þ

are the momentum inverse Stokes number, the particle loading, the
Grashof number, square of Hartmann number, buoyancy parameter,
the Prandtl number, the specific heat ratio, the temperature inverse
Stokes number and the heat generation or absorption parameter,
respectively.

The dimensionless boundary conditions are

uð0Þ ¼ uð1Þ ¼ 0 ð27a;bÞ

@h
@g

����
g¼0
¼ �1; hð1Þ ¼ rqt ð27c;dÞ

where rqt ¼ T2�To
q1h=k is the walls thermal ratio.
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Fig. 2. Effects of rqt on fluid and particle phases temperature profiles.
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3. Analytical solutions

In this section, analytical solutions for various special cases of
the problem under consideration are reported.

Case 1. This case considers steady natural convection two-phase
particle/fluid flow through an isoflux–isothermal vertical channel
in the absence of magnetic field (M = 0) and heat generation or
absorption (h = 0) effects. The governing equations for this case
can be written as follows:

D2u� ajðu� upÞ þ Grhþ jH ¼ 0 ð28Þ
1
Pr

D2hþ jecðhp � hÞ ¼ 0 ð29Þ

aðu� upÞ � H ¼ 0 ð30Þ
hp � h ¼ 0 ð31Þ

where the D2 denotes a second derivative operator with respect to
g.

The boundary conditions are:

uð0Þ ¼ uð1Þ ¼ 0 ð32a;bÞ

Dhð0Þ ¼ �1; hð1Þ ¼ rqt ð32c;dÞ

Eq. (30) implies that

upðgÞ ¼ uðgÞ � H
a

ð33Þ

which indicates that the particle-phase velocity is the same as the
fluid-phase velocity except that it is shifted by the factor H

a below
the fluid-phase velocity. Eq. (31) implies that

hpðgÞ ¼ hðgÞ ð34Þ

By substituting Eq. (34) into Eq. (29) one obtains

D2h ¼ 0 ð35Þ

The solution of this simple second order differential equation,
which satisfies the boundary conditions (32c,d) is

hðgÞ ¼ �gþ rqt þ 1 ð36Þ

This indicates that the temperature of both phases has a linear
shape of pure conduction.

Now, substituting Eqs. (36) and (33) into Eq. (28) gives

D2u ¼ Grg� Grðrqt þ 1Þ ð37Þ

The solution of this second order differential equation subject to
the boundary conditions (32a,b) is

uðgÞ ¼ Gr½g3 � 3ð1þ rqtÞg2 þ ð2þ 3rqtÞg�
6

ð38Þ

This shows that the fluid-phase velocity profile has a cubic rela-
tion with the normal distance. The corresponding solution for up(g)
is obtained by substituting Eq. (38) into Eq. (33) to get

upðgÞ ¼
Gr½g3 � 3ð1þ rqtÞg2 þ ð2þ 3rqtÞg�

6
� H

a
ð39Þ

Case 2. This case considers steady natural convection two-phase
particle/fluid flow through an isoflux–isothermal vertical channel
subjected to a uniform transverse field which is applied normally
to the flow direction and the flow has neither heat generation
nor heat absorption effects (/ = 0). The governing equations and
the boundary conditions will be the same as Case 1 except the
fluid-phase momentum equation, which can be written as

D2u� ajðu� upÞ þ Grh�M2uþ jH ¼ 0 ð40Þ

Substituting Eqs. (33) and (36) into Eq. (40) gives
D2u�M2u ¼ �Grð�gþ rqt þ 1Þ ð41Þ

Solving the above equation subject to (32a,b) gives the follow-
ing fluid-phase velocity:

uðgÞ ¼ c1eMg þ c2e�Mg þ Grð�gþ rqt þ 1Þ
M2 ð42Þ

where

c1 ¼
Gr
M2

� �
ðrqt þ 1Þe�M � rqt

eM � e�M

	 

ð43Þ

c2 ¼ �
Gr
M2

� �
ðrqt þ 1ÞeM � rqt

eM � e�M

	 

ð44Þ

The corresponding particle-phase velocity profile up(g) can be
written as

upðgÞ ¼ c1eMg þ c2e�Mg þ Grð�gþ rqt þ 1Þ
M2 � H

a
ð45Þ

Fig. 2 shows the linear relationship between the fluid-phase and
particle- phase temperature profiles and rqt which is decreasing at
the second wall. It is observed that as rqt increases, the temperature
profiles increase.

Figs. 3 and 4 present typical velocity profiles for the fluid and
particle phases for different values of rqt, respectively. The increase
in the fluid-phase temperature due to increases in the value of rqt

cause the thermal buoyancy effects to increase. This induces higher
flow velocities of both phases in the channel as shown in Figs. 3
and 4.

Figs. 5 and 6 display the effects of increasing the Grashof num-
ber Gr on the velocity fields of both the fluid and particle phases,
respectively. Increases in the values of Gr increase the thermal
buoyancy effect represented by the Grh term of Eq. (28). This gives
rise to an increase in the flow of both phases in the channel. This
term represents the driving force of flow such that when Gr = 0
no flow will take place in the channel.

Figs. 7 and 8 present velocity profiles for the fluid and particle
phases for various values of the Hartmann number M, respectively.
As the strength of the magnetic field increases, the magnetic Lor-
entz force which is a force that opposes the flow direction in-
creases. This causes the movement of both the fluid and the
particle phases to slow down as shown in Figs. 7 and 8.

Case 3. This case considers steady natural convection two-phase
flow through an isoflux–isothermal vertical channel in the pres-
ence of a heat source (/ > 0) and a magnetic field. The governing
equations and the boundary conditions for this case will be the
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Fig. 3. Effects of rqt on fluid-phase velocity profile.

0.0 0.2 0.4 0.6 0.8 1.0

-0.96

-0.90

-0.84

-0.78
Gr=1.0
H =1.0
M =0.0
Pr=0.7

r
qt
=1.0

r
qt
=0.75

r
qt
=0.5

r
qt
 = 0.1

α =1.0
ε =1.0
φ =0.0
γ =1.0
κ =1.0

u
p

η

Fig. 4. Effects of rqt on particle-phase velocity profile.
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Fig. 5. Effects of Gr on fluid-phase velocity profile.
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Fig. 6. Effects of Gr on particle-phase velocity profile.
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Fig. 7. Effects of M on fluid-phase velocity profile.
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Fig. 8. Effects of M on particle-phase velocity profile.
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same as Case 2 except the fluid-phase energy equation, which can
be written as follows:

1
Pr

� �
D2hþ jceðhp � hÞ � /h ¼ 0 ð46Þ

Substituting Eq. (34) into (46) and solving the resulting differ-
ential equation subject to (32c,d) gives the following fluid-phase
temperature:
hðgÞ ¼ hpðgÞ

¼ rqt þ
sinh

ffiffiffiffiffiffiffiffi
/Pr

p
ffiffiffiffiffiffiffiffi
/Pr

p
 !

cosh
ffiffiffiffiffiffiffiffi
/Pr

p
g

cosh
ffiffiffiffiffiffiffiffi
/Pr

p � sinh
ffiffiffiffiffiffiffiffi
/Pr

p
gffiffiffiffiffiffiffiffi

/Pr
p ð47Þ

Substituting Eqs. (33) and (47) into (40) yields

D2u�M2u ¼ �GrhðgÞ ð48Þ

Solving this differential equation subject to the boundary condi-
tions (32a,b) gives the following fluid-phase velocity:
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uðgÞ ¼
�Gr rqt

ffiffiffiffiffiffiffiffi
/Pr

p
þ sinh

ffiffiffiffiffiffiffiffi
/Pr

p� �
ffiffiffiffiffiffiffiffi
/Pr

p
ð/Pr�M2Þ

� sinhMðg�1Þ� cosh
ffiffiffiffiffiffiffiffi
/Pr

p
sinhMgþ sinhM cosh

ffiffiffiffiffiffiffiffi
/Pr

p
g

sinhM

" #

þ Grffiffiffiffiffiffiffiffi
/Pr

p
ð/Pr�M2Þ

� sinh
ffiffiffiffiffiffiffiffi
/Pr

p
gsinhM� sinh

ffiffiffiffiffiffiffiffi
/Pr

p
sinhMg

sinhM

" #

ð49Þ

The particle-phase velocity profile is obtained by substituting
Eq. (49) into Eq. (33).

This solution can be used to obtain the corresponding problem
without a magnetic field (M = 0). Thus, the fluid-phase velocity of
such problem will be obtained by setting M equals to zero and
applying L’Hospital’s rule to Eq. (49). If this is done, one obtains

uðgÞ ¼ �Gr rqt

ffiffiffiffiffiffiffiffi
/Pr

p
þ sinh

ffiffiffiffiffiffiffiffi
/Pr

p� �

�
g 1� cosh

ffiffiffiffiffiffiffiffi
/Pr

p� �
þ cosh

ffiffiffiffiffiffiffiffi
/Pr

p
g� 1

� �
ð/PrÞ

3
2

þ Gr
sinh

ffiffiffiffiffiffiffiffi
/Pr

p
g� g sinh

ffiffiffiffiffiffiffiffi
/Pr

p
ð/PrÞ

3
2

ð50Þ

Case 4. This case considers steady natural convection two-phase
through an isoflux–isothermal vertical channel in the presence of a
heat sink ð/ < 0Þ and a magnetic field. The governing equations
and boundary conditions will be the same as in Case 2 except
the fluid-phase energy equation, which can be expressed as:

1
Pr

� �
D2hþ jceðhp � hÞ þ /h ¼ 0 ð51Þ

Substituting Eq. (34) into Eq. (51) and solving the resulting dif-
ferential equation gives the following fluid-phase temperature:

hðgÞ ¼
rqt þ 1=

ffiffiffiffiffiffiffiffi
/Pr

p� �
sin

ffiffiffiffiffiffiffiffi
/Pr

p
cos
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3
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p
g

� 1=
ffiffiffiffiffiffiffiffi
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sin
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/Pr

p
g ð52Þ

By substituting Eqs. (33) and (52) into Eq. (40) and rearranging
one obtains

D2u�M2u ¼ �GrhðgÞ ð53Þ

Eq. (53) can be solved subject to the flow boundary conditions
given in Eqs. (32a,b) by the usual method of solving such equation
to give the following fluid-phase velocity:

uðgÞ ¼
Gr rqt þ

sin
ffiffiffiffiffiffi
/Pr
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/Pr
p
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ð54Þ

Again, this solution can be used to solve the corresponding
problem in the absence of a magnetic field. Setting M equals to zero
and applying L’Hospital’s rule to Eq. (54) will give the fluid-phase
velocity for this problem as:
uðgÞ ¼
Gr rqt þ 1ffiffiffiffiffiffi

/Pr
p sin

ffiffiffiffiffiffiffiffi
/Pr

p	 

/Pr cos
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/Pr
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Some results for h, hp, u and up based on the closed-form solu-
tions for the flow through a vertical channel in the presence of heat
generation (source) or a heat absorption (sink) are presented in
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Figs. 9–14. Fig. 9 shows that h and hp increase as / increases such
that they increase for heat generation (/ > 0) and decrease for heat
absorption effects (/ < 0). Fig. 10 shows that both h and hp decrease
as Pr increases for / = �1.

Figs. 11 and 12 show representative velocity profiles for both
phases (u and up) for different values of the heat generation or
absorption coefficient /. It is depicted that both u and up increase
as / increases due to the reasons mentioned before.

The effects of the Prandtl number on the velocity profiles of
both phases for heat generation or absorption conditions are
shown in Figs. 13 and 14, respectively. As observed in Fig. 10 the
thermal states of both phases decrease as Pr increases in the pres-
ence of heat absorption effects and increase in the presence of heat
generation. This causes the velocity profiles of both phases to in-
crease as Pr increases in the presence of heat generation and to de-
crease in the presence of heat absorption as clearly shown in the
figures.
4. Conclusions

The problem of MHD natural convection flow through a vertical
parallel-plate isoflux–isothermal channel in the presence of mag-
netic field and heat generation or absorption effects was consid-
ered. The governing equations were non-dimensionalized and
solved analytically. Closed-form solutions for four special and gen-
eral cases were obtained. Representative results were presented
graphically to illustrate the influence of the physical parameters
on the solutions. The conclusions based on the results of the para-
metric study performed for the cases mentioned above can be
summarized as follows:

1. In the absence of viscous and magnetic dissipation, drag work,
and heat generation or absorption, the temperature profiles of
both phases were identical and had a linear shape of pure
conduction.

2. An increase in the values of wall thermal ratio increased the
thermal buoyancy effect which, consequently, increased the
flow of both phases in the channel.

3. Increasing in the values of the Grashof number which repre-
sents the driving force led to increases in the flow of both
phases.

4. The magnetic field had the effect of reducing the velocity of the
fluid-phase which, in turn, reduced the particle-phase velocity.

5. Increases in the values of the heat generation (or absorption)
coefficient caused the temperature to increase (decrease).

6. The thermal states of both phases decreased as Pr increased in
the presence of heat absorption effects and increased in the
presence of heat generation.

It is hoped that the analytical results obtained in this project be
used as a vehicle for understanding natural convection in two-
phase suspensions and a stimulus for experimental work.
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