
International Journal of Numerical Methods for Heat & Fluid Flow
Heat and mass transfer in a porous medium filled rectangular duct with Soret and
Dufour effects under inclined magnetic field
Ali J. Chamkha B. Mallikarjuna R. Bhuvana Vijaya D.R.V. Prasada Rao

Article information:
To cite this document:
Ali J. Chamkha B. Mallikarjuna R. Bhuvana Vijaya D.R.V. Prasada Rao , (2014),"Heat and mass transfer
in a porous medium filled rectangular duct with Soret and Dufour effects under inclined magnetic field",
International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 24 Iss 7 pp. 1405 - 1436
Permanent link to this document:
http://dx.doi.org/10.1108/HFF-03-2013-0104

Downloaded on: 08 September 2014, At: 10:03 (PT)
References: this document contains references to 32 other documents.
To copy this document: permissions@emeraldinsight.com
The fulltext of this document has been downloaded 3 times since 2014*

Users who downloaded this article also downloaded:
M. Adekojo Waheed, (2006),"Temperature dependent fluid properties effects on the heat function
formulation of natural convective flow and heat transfer", International Journal of Numerical Methods for
Heat &amp; Fluid Flow, Vol. 16 Iss 2 pp. 240-260
Manab Kumar Das, Pravin Shridhar Ohal, (2009),"Natural convection heat transfer augmentation in a
partially heated and partially cooled square cavity utilizing nanofluids", International Journal of Numerical
Methods for Heat &amp; Fluid Flow, Vol. 19 Iss 3/4 pp. 411-431
M.A.I. El#Shaarawi, S.A. Haider, (2001),"Critical conductivity ratio for conjugate heat transfer in eccentric
annuli", International Journal of Numerical Methods for Heat &amp; Fluid Flow, Vol. 11 Iss 3 pp. 255-279

Access to this document was granted through an Emerald subscription provided by
Token:JournalAuthor:C9ED8B76-0EB4-4CDA-9A23-9821BC17EFA8:

For Authors
If you would like to write for this, or any other Emerald publication, then please use our Emerald for
Authors service information about how to choose which publication to write for and submission guidelines
are available for all. Please visit www.emeraldinsight.com/authors for more information.

About Emerald www.emeraldinsight.com
Emerald is a global publisher linking research and practice to the benefit of society. The company
manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as well as
providing an extensive range of online products and additional customer resources and services.

Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the Committee
on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for digital archive
preservation.

*Related content and download information correct at time of download.

D
ow

nl
oa

de
d 

by
 P

ro
fe

ss
or

 A
li 

C
ha

m
kh

a 
A

t 1
0:

03
 0

8 
Se

pt
em

be
r 

20
14

 (
PT

)

http://dx.doi.org/10.1108/HFF-03-2013-0104


Heat and mass transfer in
a porous medium filled

rectangular duct with Soret
and Dufour effects under
inclined magnetic field

Ali J. Chamkha
Manufacturing Engineering Department,

The Public Authority for Applied Education and Training, Shuweikh, Kuwait

B. Mallikarjuna and R. Bhuvana Vijaya
Mathematics Department, Jawaharlal Nehru Technological University Anantapur,

Anantapur, India, and

D.R.V. Prasada Rao
Mathematics Department, Sri Krishnadevaraya University, Anantapur, India

Abstract

Purpose – The purpose of this paper is to study the effects of Soret and Dufour effects on convective
heat and mass transfer flow through a porous medium in a rectangular duct in the presence of inclined
magnetic field.
Design/methodology/approach – Using the non-dimensional variables, the governing equations
have been transformed into a set of differential equations, which are non-linear and cannot be solved
analytically, therefore finite element method has been used for solving the governing equations.
Findings – The influence of thermo-diffusion, diffusion thermo, radiation, dissipation, heat sources
and the inclined magnetic field on all the flow, heat and mass transfer characteristics has been found to
be significant.
Originality/value – The problem is relatively original as it combines many effects as Soret and
Dufour effects and chemical reaction under inclined magnetic field.

Keywords Heat source, Heat and mass transfer, Soret and Dufour effects, Chemical reaction,
Inclined magnetic field, Rectangular duct

Paper type Research paper

1. Introduction
The investigation of heat transfer in enclosures containing porous media began with
experimental work of Verschoor and Greebler (1952). Verschoor and Greebler (1952)
were followed by several other investigators interested in porous media heat transfer in
rectangular enclosures (Ribando and Torrance, 1976; Rubin and Schweitzer, 1972; Seki
et al., 1981; Sivaiah, 2004). In particular, Bankvall (Bankvall, 1972, 1973, 1974) has
published a great deal of practical work concerning heat transfer by natural convection
in rectangular enclosures completely filled with porous media. Burns et al. (1926) have
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described a porous medium heat transfer flow in a rectangular geometry. Cheng
and Hi (1987) have studied the flow and heat transfer rate in a rectangular box
with solid walls using a Brinkman model the box is differentially heated in the
horizontal direction. Chiu et al. (2007) have discussed mixed convection heat transfer
in horizontal rectangular ducts with radiation effects. Chittibabu et al. (2006) has
discussed convective flow in a porous rectangular duct with differential heated side
wall using Brinkman model.

The convective heat and mass transfer occurs in a wide range of engineering
and scientific fields such as oceanography, biology, chemical vapor transformation
processes, pollution, astrophysics, geology and crystal growth techniques, for instance
semi-conductors and alloys, where temperature and concentration differences are
combined. Chamkha and Al-Naser (2002) investigated hydromagnetic double-diffusive
convection in a rectangular enclosure with uniform side heat and mass fluxes and
opposing temperature and concentration gradients. Other experimental studies dealing
with thermo-solutal convection in rectangular enclosures were reported by Al-Farhany
and Turan (2012) and Lee and Hyun (1990) and Hyun and Lee (1990).

Electrically conducting fluids in the presence of magnetic field have been applied
extensively in various fields such as geothermal reservoir, metallurgical applications
involving continuous casting and solidification of metal alloys and others and crystal
growth. Magnetohydrodynamics is an academic discipline which studies the dynamics
of electrically conducting fluids. Electromagnetic field has an important influence
on the hydrodynamics. One of the main purposes of the electromagnetic control is to
stabilize the flow and suppress oscillatory instabilities, which degrades the resulting
crystal. Mahapatra et al. (2012) have studied mixed convection flow in an inclined
enclosure under magnetic field with thermal radiation and heat generation. Magnetic
field effect on the unsteady free convection flow in a square cavity filled with a porous
medium with a constant heat generation reported by Revnic et al. (2011). Shehadeh and
Duwairi (2009) investigated MHD natural convection in porous media-filled enclosures,
which were in good agreement with, reported experimental results. Shanthi et al. (2011)
have studied finite element analysis of convective heat and mass transfer flow
of a viscous electrically conducting fluid through a porous medium in a rectangular
cavity with dissipation. Nagaradhika et al. (2011) investigated convective heat transfer
in a rectangular cavity under the influence of radiation, viscous dissipation and
temperature gradient heat source.

In all these studies Soret and Dufour effects are assumed to be negligible. Such
effects are significant when density differences exist in the flow regime. For instance,
when heat and mass transfer occur simultaneously in a moving fluid, the relations
between the fluxes and the driving potentials are of more intricate nature. Also, when
species are introduced at a surface in fluid domain, with different (lower) density than
the surrounding fluid, both Soret and Dufour effects can be significant. It has been
found that an energy flux can be generated not only by temperature gradients but by
composition gradients as well. The energy flux caused by a composition gradient is
called the Dufour or diffusion-thermo effect. On the other hand, mass fluxes can
also be created by temperature gradients and this is called the Soret or thermal-
diffusion effect. The Soret effect, for example, has been utilized for isotope separation,
and in mixture between gases with very light molecular weight (H2, He) and of medium
molecular weight (N2, air), the Dufour effect was found to be of a considerable
magnitude such that it cannot be ignored (Eckert and Drake, 1972). In view of
these application (Gnaneswara Reddy and Bhaskar Reddy, 2010; Srinivas et al., 2012;
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Tai and Ming, 2010; Cheng, 2011; Dulal and Hiranmoy, 2011) have studied and reported
the significance of Soret and Dufour effects.

Double diffusive natural convection problems with chemical reaction are of great
importance in many processes and have received a considerable amount of attention in
recent years. In particular all industrial chemical processes are designed to transform
cheaper raw materials to high value products. A reactor, in which such chemical
transformations take place, has to carry out several functions like bringing reactants
into intimate contacts, providing an appropriate environment at adequate time,
and allowing for the removal of products. Effect of chemical reaction and radiation
absorption on the unsteady MHD free convection flow past a semi infinite vertical
permeable moving plate with heat source and suction reported by Ibrahim et al. (2008).
The effects of radiation absorption on MHD flow, heat and mass transfer problems
have become more important in industrial area. At high operating temperature,
radiation effect can be quite significant. Makinde (2005) examined the transient
free convection interaction with thermal radiation of an absorbing-emitting fluid
along moving vertical permeable plate. Rao and Shivaiah (2011) studied chemical
reaction effects on unsteady MHD flow past semi-infinite vertical porous plate with
viscous dissipation.

The objective of the present problem is to study the effects of Soret and Dufour
effects on convective heat and mass transfer flow through a porous medium in a
rectangular duct in the presence of inclined magnetic field. Using the non-dimensional
variables, the governing equations have been transformed into a set of ordinary
differential equations, which are non-linear and cannot be solved analytically, therefore
finite element method has been used for solving it. The behaviors of the velocity,
temperature, concentration, Nusselt number and Sherwood number are presented
graphically for variations in the governing parameters.

2. Mathematical formulation
We consider the mixed convective heat and mass transfer flow of a viscous
incompressible fluid in a saturated porous medium confined in the rectangular duct
with internal heat sources (Figure 1) whose base length is a and height b. We assume
that the enclosure is permeated by a uniform inclined magnetic field. The geometry
and Cartesian coordinate system are schematically shown in Figure 1. Where the
dimensional coordinates x and y are measures along the horizontal bottom wall and
normal to it along the left vertical wall, respectively. The heat flux on the base and top

y

T=Tc

C=Cc

C=Ch

T=Th

v

g

u x

Ho

α1
Figure 1.

Physical model
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walls is maintained constant. The Cartesian coordinate system O(x,y) is chosen with
origin on the central axis of the duct and its base parallel to x-axis.

We assume that:

(1) the convective fluid and the porous medium are everywhere in local
thermodynamic equilibrium;

(2) there is no phase change of the fluid in the medium;

(3) the properties of the fluid and of the porous medium are homogeneous and
isotropic;

(4) the porous medium is assumed to be closely packed so that Darcy’s momentum
law is adequate in the porous medium;

(5) the effect of buoyancy is included through well-known Boussinesq
approximation; and

(6) the magnetic Reynolds number is assumed to be small so that the induced
magnetic field can be neglected compared to the applied magnetic field.

Under these assumption the conservation equations for mass, Darcy, energy, diffusion
and electric transfer along with the Boussinesq approximation are given by:

qu0

qx0
þ qv0

qy0
¼ 0 ð1Þ

qu0

qx0
� qv0

qy0
¼ k

m
q
qx
ðr0gÞ þ smeH

2
o

r

�
� qu0

qy0
Sin2ðgÞ þ 2

qv0

qy0
SinðgÞCosðgÞ þ qv 0

qx
Cos2ðgÞ

�
ð2Þ

rscp u0
qT

qx0
þ v0

qT

qy0

� �
¼ K1

q2T

qx02
þ q2T

qy02

 !
þ Qþ m

K

� �
ðu2 þ v2Þ � qðqrÞ

qx

þ D1kT1

CsCp

q2T

qx02
þ q2T

qy02

 ! ð3Þ

rscp u0
qC

qx0
þ v0

qC

qy0

� �
¼ D1

q2C

qx02
þ q2C

qy02

 !
þ D1kT

Tm

q2T

qx02
þ q2T

qy02

 !
�k0C ð4Þ

r0 ¼ r0 1� bðT � T0Þ � b�ðC � C0Þf g ð5Þ

where:

T0 ¼
Th þ Tc

2
;C0 ¼

Ch þ Cc

2

and where u0 and v0 are Darcy velocities along x, y direction. T, C and g are the
temperature, concentration and acceleration due to gravity. TC, CC and Th, Ch are
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the temperature and concentration on the cold and warm side walls, respectively. r, m,
e and b are the density, coefficients of viscosity, kinematic viscosity and thermal
expansion of the fluid, k is the permeability of the porous medium, K1 is the cross
diffusivity, b* is the volume coefficient of expansion with mass fraction concentration,
qr is the radiative heat flux and kT is the thermal diffusion ratio, Tm is the mean fluid
temperature and Cs is the concentration susceptibility.

The boundary conditions are:

u0 ¼ v0 ¼ 0 on the boundary of the duct
T 0 ¼ Tc;C ¼ Cc on the sidewall to the left
T 0 ¼ Th;C ¼ Ch on the sidewall to the right
qT 0

qy
¼ 0;

qC

qy
¼ 0 on the top ðy ¼ 0Þ and bottom

u ¼ v ¼ 0 walls ðy ¼ 0Þwhich are insulated:

ð6Þ

Invoking Rosseland approximation for radiation:

qr ¼
4s�

3bR

qT 04

qy

Expanding T4 in Taylor’s series about Te and neglecting higher order terms:

T 04 ffi 4T3
e T � 3T4

e

We now introduce the following non-dimensional variables:

x0 ¼ ax; y0 ¼ by; c ¼ b=a

u0 ¼ n=að Þ u; v0 ¼ n=að Þ u ; p0 ¼ n2r=a2
� �

p

T ¼ T0 þ y Th�Tcð Þ C ¼ C0 þ fðCh�CcÞ

ð7Þ

The governing equations in the non-dimensional form are:

qu

qx
� qv

qy
¼ Ra

�
qy
qx
þ N

qf
qx

�
þM 2

�
� qu0

qy
Sin2ðgÞ þ 2

qv0

qy
SinðgÞCosðgÞ þ qv0Cos2ðgÞ

qx

�
ð8Þ

P u
qy
qx
þ v

qy
qy

� �
¼ 1þ 4N

3

� �
q2y
qx2
þ q2y

qy2

 !
þ aþ EC u2 þ v2

� �
þ DuP

q2f
qx2
þ q2f

qy2

 !

ð9Þ

Sc u
qf
qx
þ v

qf
qy

� �
¼ q2f

qx2
þ q2f

qy2

 !
þ ScSo

q2y
qx2
þ q2y

qy2

 !
� kf ð10Þ
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In view of the equation of continuity we introduce the stream function c as:

u ¼ qc
qy

; v ¼ � qc
qx

ð11Þ

Eliminating the pressure p from the Equation (9) and (10) and making use of (11) the
equations in terms of c and y are:

r2c ¼ �Raðqy
qx
þ N

qf
qx
Þ þM 2ðq

2c
qy2

Sin2gþ 2
q2c
qxqy

SinðgÞCosðgÞ þ q2c
qx2

Cos2ðgÞÞ

ð12Þ

P
qc
qy

qy
qx
� qc

qx

qy
qy

� �
¼ 1þ 4

3N1

� �
q2y
qx2
þ q2y

qy2

 !
� ayþ EC

qc
qy

� �2

þ qc
qx

� �2
 !

þ Du P
q2f
qx2
þ q2f

qy2

 !

ð13Þ

Sc
qc
qy

qf
qx
� qc

qx

qf
qy

� �
¼ q2f

qx2
þ q2f

qy2

 !
þ ScSo

q2y
qx2
þ q2y

qy2

 !
� kf ð14Þ

where:

G ¼ gbðTh � TcÞa3

v2
ðGrashof numberÞ

M 2 ¼ sm2
eH

2
o L2

n2
ðHartmann numberÞ

P ¼ m cp=K1 ðPrandtl numberÞ

a ¼Qaz= Th � Tcð Þk1 ðHeat source parameterÞ

Ra ¼ bg Tg � Tcð ÞKa

n2
ðRayleigh NumberÞ

N1 ¼
3bRK1

4s� : T3
e

ðRadiation parameterÞ

Sc ¼ n
D1

ðSchmidt NumberÞ
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So ¼ D1kTDT

nTmDC
ðSoret parameterÞ

Du ¼ D1kTDC

CsCpnDT
ðDufour numberÞ

N ¼ b�ðCh � CcÞ
bðTh � TcÞ

ðBuoyancy ratioÞ

Ec ¼ a4

mKK1DT

� �
ðEckert numberÞ

k ¼ KL2

D1
ðChemical reaction parameterÞ

The boundary conditions are:

qc
qx
¼ 0;

qc
qy
¼ 0 on x ¼ 0 & 1 ð15Þ

y ¼ 1 f ¼ 1 on x ¼ 0

y ¼ 0 f ¼ 0 on x ¼ 1
ð16Þ

3. Method of solution
Finite element analysis
The set of differential equations given in (12)-(14) is highly non-linear and therefore,
cannot be solved analytically. Hence finite element method has been used for solving it.
The finite element method is powerful technique for solving ordinary and partial
differential equations. This method is so general that it can be applied to a wide variety
of engineering problems including heat transfer, fluid mechanics, solid mechanics
and chemical processing. For the finite element method one can refer to Bathe (1996)
and Reddy (1985).

The region is divided into a finite number of three node triangular elements, in each
of which the element equation is derived using Galerkin weighted residual method.
In each element fi the approximate solution for an unknown f in the variational
formulation is expressed as a linear combination of shape function. N i

k, k¼ 1,2,3, which
are linear polynomials in x and y. This approximate solution of the unknown f
coincides with actual values at each node of the element. The variational formulation
results in a 3 � 3 matrix equation (stiffness matrix) for the unknown local nodal values
of the given element. These stiffness matrices are assembled in terms of global nodal
values using inter element continuity and boundary conditions resulting in global
matrix equation.
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In each case there are r distinct global nodes in the finite element domain
and fp, p¼ 1,2,y, r is the global nodal values of any unknown f defined over the
domain then:

f ¼
X8

i¼1

Xr

p¼1

fp Fi
p;

where the first summation denotes summation over s elements and the second
one represents summation over the independent global nodes and Fi

p¼N i
N, if p is

one of the local nodes say k of the element ei¼ 0, otherwise. fp’s are determined
from the global matrix equation. Based on these lines we now make a finite
element analysis of the given problem governed by (12)-(14) subjected to the
conditions (15)-(16).

Let ci, yi and fi be the approximate values of c, y and f:

ci ¼ Ni
1c

i
1 þ Ni

2c
i
2 þ Ni

3c
i
3 ð17aÞ

yi ¼ Ni
1y

i
1 þ Ni

2y
i
2 þ Ni

3y
i
3 ð17bÞ

f ¼ Ni
1f

i
1 þ Ni

2f
i
2 þ Ni

3f
i
3 ð17cÞ

Substituting the approximate value ci, yi and fi for c, y and f, respectively in (13),
the error:

E i
1 ¼ 1þ 4

3N1

� �
q2yi

qx2
þ q2yi

qy2
� P

qci

qy

qyi

qx
� qci

qx

qyi

qy

 !
þ a

þ EC

qc
qy

� �2

þ qc
qx

� �2
" #

þ DuPðq
2fi

qx2
þ q2fi

qy2
Þ

ð18Þ

E i
2 ¼

q2fi

qx2
þ q2fi

qy2
� Sc

qci

qy

qfi

qx
� qci

qx

qfi

qy

 !
þ ScSoðq

2yi

qx2
þ q2yi

qy2
Þ � kfi ð19Þ

Under Galerkin method this error is made orthogonal over the domain of ei to the
respective shape functions (weight functions) where:Z

ei

Ei
1N

i
kdO ¼ 0;

Z
ei

Ei
2N

i
kdO ¼ 0

1412

HFF
24,7

D
ow

nl
oa

de
d 

by
 P

ro
fe

ss
or

 A
li 

C
ha

m
kh

a 
A

t 1
0:

03
 0

8 
Se

pt
em

be
r 

20
14

 (
PT

)



Z
ei¼

Ni
k

 
1þ 4

3N1

� �
qzyi

qx2
þ qzyi

qy2

 !
� P

qci

qy

qyi

qx
� qci

qx

qyi

qy

 !

þ aþ EC

qc
qy

� �2

þ qc
qx

� �2
" #

þ DuP

�
q2fi

qx2
þ q2fi

qy2

�!
dO ¼ 0

ð20Þ

Z
ei¼

Ni
k

 
qzfi

qx2
þ qzfi

qy2

 !
� Sc

qci

qy

qfi

qx
� qci

qx

qfi

qy

 !

þ ScSo
qzyi

qx2
þ qzyi

qy2

 !
� kfi

!
dO ¼ 0

ð21Þ

Using Green’s theorem we reduce the surface integral (20) and (21) without affecting c
terms and obtain:

Z
ei

N i
k

1þ 4
3N1

� �
qNi

k

qx
qyi

qx
þ qNi

k

qy
qyi

qy
� PNk

qci

qy
qyi

qx
� qci

qx
qyi

qy

� �
þ aþ EC

qc
qy

� �2
þ qc

qx

� �2
8><
>:

9>=
>;dO

¼
Z
Gi

N i
k

qyi

qx
nx þ

qyi

qy
ny

 !
dGi

ð22Þ

Z
eiei

N i
k

qNi
k

qx
qfi

qx
þ qNi

k

qy
qfi

qy
� SciNk

qci

qy
qfi

qx
� qci

qx
qfi

qy

� �
þScSo

�
qNi

k

qx
qyi

qx
þ qNi

k

qy
qyi

qy

�
� k

R
ei

fiN i
kdO

8>><
>>:

9>>=
>>;dO

¼
Z
Gi

N i
k

qyi

qx
þ ScSo

N

qfi

qx

�
nx þ

�
qyi

qy
þ ScSo

qyi

qy
ny

 !
dGi

ð23Þ

where GI is the boundary of ei.
Substituting LHS of (17a)-(17c) for ci, yi and fi in (22) and (23) we get:

X
1

Z
ei

1þ 4N

3

� �
qNi

k

qx

qNi
L

qx
þ qNi

L

qy

qNi
k

qy
� P

X
1

ci
m

Z
ei

qNi
m

qy

qNi
L

qx
� qNi

m

qx

qNi
L

qy

� �
dO

þ a
Z
ei

N i
kdOþ EC

Z
ei

qc
qy

� �2

þ qc
qx

� �2
 !

þ DuP
X

1

Z
ei

fi

�
qNi

k

qx

qNi
L

qx
þ qNi

L

qy

qNi
k

qy

�
dO

¼
Z
Gi

N i
k

qyi

qx
nx þ

qyi

qy
ny

 !
dGi ¼ Q i

k ðl;m; k ¼ 1; 2; 3Þ

ð24Þ
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X
1

Z
ei

fi

�
qNi

k

qx

qNi
L

qx
þ qNi

L

qy

qNi
k

qy

�
� Sc

X
1

ci
m

Z
ei

qNi
m

qy

qNi
L

qx
� qNi

m

qx

qNi
L

qy

� �
dO

þ ScSo
X

yi

Z
ei

�
qNi

k

qx

qNi
L

qx
þ qNi

L

qy

qNi
k

qy

�
dOi � k

X
1

Z
ei

fiN i
kN

i
LdOi

¼
Z
Gi

N i
k

qyi

qx
þ ScSo

qyi

qx

�
nx þ

�
qyi

qy
þ ScSo

qyi

qy
ny

 !
dGi ¼ QC

i ðl;m; k ¼ 1; 2; 3Þ

ð25Þ

where Q i
k¼Q i

k1þQi
k2þQ i

k3, Q i
k’s being the values of Q i

k on the sides s¼ (1,2,3) of the
element ei. The sign of Qi

k’s depends on the direction of the outward normal w.r.t
the element.

Choosing different Ni
k’s as weight functions and following the same procedure we

obtain matrix equations for three unknowns (Qi
p) viz.:

ðai
pÞðy

i
pÞ ¼ ðQi

kÞ ð26Þ

where (ai
pk) is a 3 � 3 matrix, (yi

p),(Qi
k) are column matrices.

Repeating the above process with each of s elements, we obtain sets of such
matrix equations. Introducing the global coordinates and global values for yi

p and
making use of inter element continuity and boundary conditions relevant to the
problem the above stiffness matrices are assembled to obtain a global matrix equation.
This global matrix is r � r square matrix if there are r distinct global nodes in the
domain of flow considered.

Similarly substituting ci, yi and fi in (12) and defining the error:

Ei
3 ¼ r2cþ Ra

�
qy
qx
þ N

qf
qx

�
�M 2

�
q2c
qy2

Sin2gþ 2
q2c
qxqy

SinðgÞCosðgÞ þ q2c
qx2

Cos2ðgÞ
�

¼
�

1þM 2Cos2ðgÞ q
2c
qx2

�
þ
�

1þM 2Sin2ðgÞ q
2c
qy2
þ 2M 2SinðgÞCosðgÞ q

2c
qxqy

þ Ra
�
qy
qx
þ N

qf
qx

�
ð27Þ

and following the Galerkin method we obtain:

Z
O

Ei
3c

i
jdO ¼ 0 ð28Þ
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Using Green’s theorem (3.8) reduces to:

Z
O

ð1þM 2Cos2ðgÞÞ qNi
k

qx
qci

qx
þ ð1þM 2Sin2ðgÞÞ qNi

k

qy
qci

qy

þ2M 2SinðgÞCosðgÞ qNi
k

qy

qci

qy
þ Raðyi qNi

k

qx
þ fi qNi

k

qx
Þ

0
@

1
AdO

¼
Z
G

Ni
k

qci

qx
nx þ

qci

qy
ny

 !
dGi þ

Z
G

Ni
knxy

idGi

ð29Þ

In obtaining (29) the Green’s theorem is applied w.r.t derivatives of c without affecting
y terms.

Using (17) and (18) in (29) we have:

X
m

ci
m

R
O
ð1þM 2Cos2ðgÞÞ

qNi
k

qx

qNi
m

qx
þ ð1þM 2Sin2ðgÞÞ qNi

m

qy

qNi
k

qy

þ2M 2SinðgÞCosðgÞ qNi
k

qy
qci

qy

0
@

1
AdO

i

þRa
P
L

ðyi
L

R
O iN

i
k

qNi
L

qx
dOþ fi

LN
R
O iN

i
k
qNi

L

qx
dO

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

¼
Z
G

Ni
k

qci

qx
nx þ

qci

qy
ny

 !
dGi þ

Z
G

Ni
ky

idOi ¼ Gi
k

ð30Þ

In the problem under consideration, for computational purpose, we choose uniform
mesh of ten triangular element (Figure 2). The domain has vertices whose global
coordinates are (0,0), (1,0) and (1,c) in the non-dimensional form. Let e1, e2,y, e10 be the
ten elements and let y1, y2,y, y10 be the global values of y and c1, c2,y,c10 be
the global values of c at the ten global nodes of the domain (Figure 2).

4. Shape functions and stiffness matrices
Range functions in n

i; j
; i¼ element, j ¼ node:

n
1;1
¼ 1� 3x n

1;2
¼ 3x� 3y

C

0.012

0.01

0.008

0.006θ

0.004

0.002

0
0.666 0.732 0.798

X
0.864 0.996

V

IV

III

II

I

0.93

Figure 2.
Variation of y with
So at y¼ c/3 level
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n
2;1
¼ 1� 3y

C
n
2;2
¼ �1þ 3y

C

n
2;3
¼ 1� 3xþ 3y

C
n
3;1
¼ 2� 3x

n
3;2
¼ �1þ 3x� 3y

C
n
3;3
¼ 3y

C

n
4;1
¼ 1� 3y

C
n
4;2
¼ �2þ 3x

n
4;3
¼ 2� 3xþ 3y

C
n
5;1
¼ 2� 3x

n
5;2
¼ �1þ 3x� 3y

C
n
5;3
¼ 3y

C

n
6;1
¼ 2� 3x n

6;2
¼ 3x� 3y

C

n
6;3
¼ 1þ 3y

C
n
7;1
¼ 2� 3y

C

n
7;2
¼ �2þ 3x n

7;3
¼ 1� 3xþ 3y

C

n
8;1
¼ 3� 3x n

8;2
¼ �1þ 3x� 3y

C

n
9;2
¼ 3x� 3y

C
n
9;3
¼ �1þ 3y

C

Substituting the above shape functions in (24), (25) and (30) w.r.t each element and
integrating over the respective triangular domain we obtain the element in the form
(24). The 3 � 3 matrix equations are assembled using connectivity conditions to obtain
a 8 � 8 matrix equations for the global nodes cp,yp and fp.

The global matrix equation for y is:

A3X3 ¼ B3 ð31Þ

The global matrix equation for f is

A4X4 ¼ B4 ð32Þ

The global matrix equation for c is

A5X5 ¼ B5 ð33Þ
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where:

A3 ¼

�1 a12 a13 0 0 0 0 0 0 0 0
0 a22 a23 0 0 0 0 0 0 0 0
0 a32 a33 a34 a35 0 0 0 0 0 0
0 0 a44 a44 a45 0 0 0 0 0 0
0 0 a53 a54 a55 a56 a57 0 0 0 0
0 0 0 0 a65 a66 a67 0 0 0 0
0 0 0 0 a75 a76 a77 a78 a79 0 0
0 0 0 0 0 0 a87 a88 a89 0 0
0 0 0 0 0 0 a97 a98 a99 a910 0
0 0 0 0 0 0 0 0 a109 a1010 0
0 0 0 0 0 0 0 0 a119 a1110 �1

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

A4 ¼

1 b
1;2

b
1;3

0 0 0 0 0 0 0 0

0 b
2;2

b
2;3

0 0 0 0 0 0 0 0

0 b
3;2

b
3;3

b
3;4

b
3;5

0 0 0 0 0 0

0 0 b
4;3

b
4;4

b
4;5

0 0 0 0 0 0

0 0 b
5;3

b
5;4

b
5;5

b
5;6

b
5;7

0 0 0 0

0 0 0 0 b
6;5

b
6;6

b
6;7

0 0 0 0

0 0 0 0 b
7;5

b
7;6

b
7;7

b
7;8

b
7;9

0 0

0 0 0 0 0 0 b
8;7

b
8;8

b
8;9

0 0

0 0 0 0 0 0 b
9;7

b
9;8

b
9;9

b
9;10

0

0 0 0 0 0 0 0 0 b
10;9

b
10;10

0

0 0 0 0 0 0 0 0 b
11;9

b
11;10

b
11;11

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

A5 ¼

�1 0 0 0 0 0 0 0 0 0
0 �1 0 0 0 0 0 0 0 0
0 0 �1 0 0 0 0 0 0 0
0 0 0 �1 0 0 0 0 0 0
0 0 0 0 �1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 �1 0
0 0 0 0 0 0 0 0 0 �1

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA
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X3 ¼

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

2
66666666666666664

3
77777777777777775

X4 ¼

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

2
66666666666666664

3
77777777777777775

X5 ¼

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

2
66666666666666664

3
77777777777777775

B3 ¼

ar
1
ar
2
ar
3
ar
4
ar
5
ar
6
ar
7
ar
8
ar
9
ar
10
ar
11

2
666666666666666666666664

3
777777777777777777777775

B4 ¼

br
1

br
2

br
3

br
4

br
5

br
6

br
7

br
8

br
9

br
10

br
11

2
6666666666666666666666666664

3
7777777777777777777777777775

B5 ¼

cr
1
cr
2
cr
3
cr
4
cr
5
cr
6
cr
7
cr
8
cr
9
cr
10
cr
11

2
666666666666666666666664

3
777777777777777777777775

The global matrix equations are coupled and are solved under the following iterative
procedures. At the beginning of the first iteration the values of (ci).

Are taken to be 0 and the global equations (31) and (32) are solved for the nodal
values of y and f. These nodal values (yi) and (fi) obtained are then used to solve the
global equation (33) to obtain (ci). In the second iteration these (ci) values are obtained
are used in (31) and (32) to calculate (yi) and (fi) and vice versa. The three equations are
thus solved under iteration process until two consecutive iterations differ by a pre-
assigned percentage.

The domain consists three horizontal levels and the solution for C and y at each
level may be expressed in terms of the nodal values as follows.

In the horizontal strip 0pypc/3:

C ¼ C1N1
1 þC2N1

2 þC7N1
7

� �
H 1� t1ð Þ

¼ C1 1� 4xð Þ þC24

�
x� y

c

�
þC7

�
4y
c
ð1� t1Þ

� �
0pxp

1
3

�
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C ¼ C2N3
2 þC3N3

3 þC6N3
6

� �
H 1� t2ð Þ þ C2N2

2 þC7N2
7 þC6N2

6

� �
H 1� t3ð Þ�
1
3
pxp

1
3

�

¼
�
C12 1� 2xð Þ þC3

�
4x� 4y

c
� 1

�
þC6

�
4y
c

��
Hð1� t2Þ

þ
�
C2

�
1� 4y

c

�
þC7

�
1þ 4y

c
� 4x

�
þC6ð4x� 1Þ

�
Hð1� t3Þ

C ¼ C3N5
3 þC4N5

4 þC5N5
5

� �
H 1� t3ð Þ

þ C3N4
3 þC5N4

5 þC6N4
6

� �
H 1� t4ð Þ

�
2
3
pxp1

�

¼
�
C3ð3� 4xÞ þC42

�
2x� 2y

c
� 1

�
þC6

�
4y
c
� 4xþ3

��
Hð1� t3ÞþC3 1� 4y

c

� �

þC5ð4x� 3Þ þC6

�
4y
c

��
Hð1� t4Þ

Along the strip c/3pyp2c/3:

C ¼ C7N6
7 þC6N6

6 þC8N6
8

� �
H 1� t2ð Þ

�
1
3
pxp1

�

þ C6N7
6 þC9N7

9 þC8N7
8

� �
H 1� t3ð Þ þ C6N8

6 þC5N8
5 þC9N8

9

� �
H 1� t4ð Þ

C ¼
�
C72ð1� 2xÞ þC6ð4x� 3Þ þC8

�
4y
c
� 1

��
Hð1� t3Þ

þC6

�
2

�
1� 2y

c

�
þC9

�
4y
c
� 1
�
þC8

�
1þ 4y

c
� 4x

��
Hð1� t4Þ

þC6

�
4 1� xð Þ þC5

�
4x� 4y

c
� 1
�
þC92

�
2y
c
� 1

��
Hð1� t5Þ

Along the strip 2c/3pyp1:

C ¼ C8N9
8 þC9N9

9 þC10N9
10

� �
H 1� t6ð Þ

�
2
3
pxp1

�

¼ C8

�
4ð1� xÞ þC94

�
x� y

c

�
þC102

�
4y
c
� 3

��
Hð1� t6Þ

where t1¼ 4x, t2¼ 2x, t3¼ 4x/3, t4¼ 4(x�y/c), t5¼ 2(x�y/c), t6¼ 4/3(x�y/c) and
H represents the Heaviside function.
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The expressions for y are
In the horizontal strip 0pypc/3:

y ¼
�
y1ð1� 4xÞ þ y24

�
x� y

c

�
þ y7

�
4y
c

��
Hð1� t1Þ

�
0pxp

1
3

�

y ¼
�
y2ð2ð1� 2xÞ þ y3

�
4x� 4y

c
� 1

�
þ y6

�
4y

c

��
Hð1� t2Þ

þy2
�

1� 4y

c

�
þ y7

�
1þ 4y

c
� 4x

�
þ y6ð4x� 1ÞÞHð1� t3Þ

�
1
3
pxp

2
3

�

y ¼ y3ð3� 4xÞ þ 2y4

�
2x� 2y

c
� 1

�
þ y6

�
4y

c
� 4xþ 3

��
Hð1� t3Þ

þ
�
y3

�
1� 4y

c

�
þ y5ð4x� 3Þ þ y6

�
4y
c

��
Hð1� t4Þ

�
2
3
pxp1

�

Along the strip c/3pyp2c/3:

y ¼
�
y7ð2ð1� 2xÞ þ y3ð4x� 3Þ þ y8

�
4y

c
� 1

��
Hð1� t3Þ

�
1
3
pxp

2
3

�

þ
�
y6ð2

�
1� 2y

c

�
þ y9

�
4y

c
� 1

�
þ y8

�
1þ 4y

c
� 4x

��
Hð1� t4Þ

þ
�
y6ð4ð1� xÞ þ y5

�
4x� 4y

c
� 1

�
þ y92

�
4y

c
� 1

��
Hð1� t5Þ

Along the strip 2c/3pyp1:

y ¼
�
y84ð1� xÞ þ y94

�
x� y

c

�
þ y10

�
4y
c
� 3
��

Hð1� t6Þ
�
2
3
pxp1

�

The expressions for f are:

f ¼
�
f1ð1� 4xÞ þ f24

�
x� y

c

�
þ f7

�
4y
c

��
Hð1� t1Þ

�
0pxp

1
3

�

f ¼
�
f2

�
2ð1� 2xÞ þ f3

�
4x� 4y

c
� 1

�
þ f6

�
4y

c

��
Hð1� t2Þ

þf2

�
1� 4y

c

�
þ f7

�
1þ 4y

c
� 4x

�
þ f6ð4x� 1Þ

�
Hð1� t3Þ

�
1
3
pxp

2
3

�

f ¼f3ð3� 4xÞ þ 2f4

�
2x� 2y

c
� 1

�
þ f6

�
4y

c
� 4xþ 3

�
Hð1� t3Þ

þ
�
f3

�
1� 4y

c

�
þ f5ð4x� 3Þ þ f6

�
4y

c

��
Hð1� t4Þ

�
2

3
pxp1

�
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Along the strip c/3pyp2c/3:

f ¼ðf7

�
2ð1� 2xÞ þ f6ð4x� 3Þ þ f8

�
4y

c
� 1

��
Hð1� t3Þ

�
1

3
pxp

2

3

�

þ
�
f6ð2

�
1� 2y

c

�
þ f9

�
4y

c
� 1
�
þ f8

�
1þ 4y

c
� 4x

��
Hð1� t4Þ

þðf6

�
4

�
1� x

�
þ f5

�
4x� 4y

c
� 1
�
þ f92

�
4y

c
� 1

��
Hð1� t5Þ

Along the strip 2c/3pyp1:

f ¼
�
f84ð1� xÞ þ f94

�
x� y

c

�
þ f10

�
4y

c
� 3

��
Hð1� t6Þ

�
2

3
pxp1

�

The dimensionless Nusselt numbers (Nu) and Sherwood Numbers (Sh) on the non-
insulated boundary walls of the rectangular duct are calculated using the formula:

Nu ¼
�
qy
qx

�
x¼1 and

Sh ¼
�
qf
qx

�
x¼1

Nusselt Number on the side wall x¼ 1 in different regions are:

Nu1¼ 2�4y3 (0pypc/3)
Nu2¼ 2�4y6 (c/3pyp2c/3)
Nu3¼ 2�4y8 (2c/3pypc)

Sherwood Number on the side wall x¼ 1 in different regions are:

Sh1¼ 2�4f3 (0pypc/3)
Sh2¼ 2�4f6 (c/3pyp2c/3)
Sh3¼ 2�4f8 (2c/3pypc)

5. Comparison
In this analysis, it should be mentioned that the results obtained herein are compared
with the results of Shanthi et al. (2011) in the absence of Q1¼ 0 and also compared with
the results of Badruddin et al. (2006) in the absence of mass transfer (N¼ 0) and
chemical reaction, the results are good agreement.

6. Results and discussion
The equations governing momentum, energy and diffusion transfer are solved
by using Galerkin Finite Element Analysis with triangular elements and bi-linear
shape functions.

The temperature and concentration distributions are exhibited in Figures 2-17 for
different variations of So, N, g and a1 at different vertical and horizontal levels. Figures
2-5 represents the variation of with Soret parameter So (0.5, 1, �1.5, �1 and �0.5). At
the vertical levels x¼ 1/3 and 2/3 the actual temperature reduces with So40 and
enhances with |So| (Figures 4 and 5). At the horizontal levels an increase in So40
reduces the actual temperature at y¼ c/3 level and enhances at y¼ 2c/3 level, while it
enhances at y¼ c/3 level and reduces at y¼ 2c/3 level with increase in |So| (Figures 2
and 3). The variation of y with buoyancy ratio N (1, 2, �0.5 and �0.8) is shown in
Figures 6-9 at different levels. It is found that the molecular buoyancy force dominates
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the thermal buoyancy force the actual temperature reduces at all vertical levels and
horizontal level y¼ c/3 and enhances at higher vertical level y¼ 2c/3 when the buoyancy
forces act in the same direction and for the forces acting in the opposite directions
the actual temperature enhances at all vertical levels and at y¼ c/3 while depreciates
at y¼ 2c/3 level. The effect of chemical reaction (0.5, 1.5, 2, �0.5, �1.5 and �2.5)

0
0.055 0.11 0.165 0.22 0.275 0.33

I

II

III

IV

V

Y

–0.05

–0.1

–0.15

–0.2

–0.25θ
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on is shown in Figures 10-13 at all levels. It is found that the actual temperature reduces
in the degenerating chemical reaction case and enhances in the generating chemical
reaction case at both the horizontal levels and in the generating chemical reaction case
the actual temperature enhances at both the horizontal levels. At x¼ 1/3 level the actual
temperature enhances both generating and degenerating chemical reaction. At higher
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vertical level x¼ 2/3 the actual temperature enhances in the degenerating case except in
the horizontal strip (0.528, 0.66) and in the generating case it depreciates except in the
region (0.462, 0.66) (Figure 13). The effect of inclination of the magnetic field (p/3,p/2,p/4
and p) on y is shown in Figures 14-17. It is found that an increase in the inclination
a1pp/2 results an enhancement in the actual temperature and for higher a1Xp1 we
notice an enhancement in the actual temperature at all the horizontal and vertical levels.
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The non-dimensional concentration is shown in Figures 18-33 for different parametric
variations at different horizontal and vertical levels. We follow the convention that
the non-dimensional concentration is positive or negative according as the actual
concentration is greater or lesser than C. Figures 18-21 represent the effect of So (0.5, 1,
�1.5,�1 and�0.5) on C. It is found that the actual concentration depreciates with So40
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and enhances with Soo0 at y¼ c/3 level and x¼ 1/3 level and at y¼ 2c/3 level it
enhances with So40 and depreciates with Soo0 (Figures 18 and 19). At the higher
vertical level x¼ 2/3 an increase in So40 reduces the actual concentration in the region
(0, 0.33) and enhances in the region (0.396, 0.66) while it increase for Soo0 we notice an
enhancement in the actual concentration in the region (0, 0.33) and depreciates in the
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region (0.396, 0.66) (Figure 21). The effect of buoyancy ratio N (1,2,�0.5 and�0.8) on C is
shown in Figures 22-25. It is found that at both the horizontal levels and vertical level
x¼ 1/3 the actual concentration enhances when buoyancy forces act in the same
directions and for the forces acting in opposite direction the actual concentration
depreciates at y¼ c/3 and x¼ 1/3 levels and enhances at y¼ 2c/3 level (Figures 22-24) at
the higher vertical level x¼ 2/3 the actual concentration enhances in the horizontal strip
(0, 0.33) and reduces in the strip (0.396, 0.66) while a reversed effect is observed for No0
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(Figure 25). The effect of chemical reaction parameter g (0.5,1.5,2,�0.5,�1.5 and�2.5) on
C is shown in Figures 26-29. It is found that at both the horizontal levels and vertical level
x¼ 1/3 the actual concentration depreciates in the degenerating chemical reaction case
and enhances in the generating chemical reaction case at higher vertical level x¼ 2/3.
The actual concentration depreciates in the degenerating chemical reaction case and in
the generating chemical reaction case it enhances in the horizontal strip (0, 0.396) and
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depreciates in the strip (0.462, 0.66) (Figure 29). The effect of inclination of the
magnetic field a1 (p/3,p/2,p/4 and p) on C is shown in Figures 30-33. It is found that an
increase in the inclination a1pp/2 results in a depreciation in the actual concentration
and for higher a1Xp we notice an enhancement in the actual concentration at all the
horizontal and vertical levels.
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The rate of heat transfer on x¼ 1 is shown in Tables I-IV for different parametric
values. The effect of Soret parameter So on Nu is shown in the Table I. It is observed
that the rate of heat transfer enhances with So4 0 and depreciates with |So| at all the
three quadrants. Table II represents the variation of Nu with buoyancy ratio N and
Dufour effect Du. Then the molecular buoyancy force dominates over the thermal
buoyancy force the rate of heat transfer enhances at all the quadrants when thermal
buoyancy forces act in the same direction and for the forces acting in opposite
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directions |Nu| depreciates at all quadrants. The effect of Dufour effect on Nu is
shown in Table II. It is found that the Nu experiences an enhancement at all the
three quadrants with increase in Du. The effect of chemical reaction on Nu is shown in
Table III. It is found that an increase in chemical reaction parameter go1.5 enhances
Nu and depreciates with higher g42.5 at lower and middle quadrants while at the
upper quadrant |Nu| reduces with go1.5 and enhances with g42.5. In the generating
chemical reaction case the Nusselt number Nu enhances at the lower and middle
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So 0.5 1 �1.5 �1 �0.5

Nu1 2.431364 2.431528 2.419068 2.423688 2.427352
Nu2 2.223104 2.238738 2.155943 2.173322 2.190341
Nu3 2.014842 2.045947 1.892819 1.922957 1.95333

Table I.
Nusselt number
at x¼ 1 level

N 1 2 �0.5 �0.8 1 1 1
Du 0.01 0.01 0.01 0.01 0.03 0.05 0.07

Nu1 2.432 2.497 2.514 2.462 5.069 5.072 5.078
Nu2 2.223 2.264 2.238 2.211 3.124 3.180 3.131
Nu3 2.015 2.031 1.962 1.961 2.721 2.712 2.817

Table II.
Nusselt number
at x¼ 1 level

g 0.5 1.5 2.5 �0.5 �1.5 �2.5

Nu1 2.431 2.438 2.424 2.457 2.464 2.470
Nu2 2.223 2.225 2.221 2.231 2.232 2.233
Nu3 2.015 2.012 2.018 2.004 2.003 1.997

Table III.
Nusselt number
at x¼ 1 level

2.5

2

1

0.5

0
0 0.066 0.132 0.198 0.264 0.33 0.396 0.462 0.528 0.594 0.66

I

II

III

IV

Y

C

–0.5

–1

–1.5

–2

–2.5

1.5

Figure 33.
Variation of C with
a1 at x¼ 2/3 level

Rad 0.05 0.5 1.5 2.5 0.05 0.05 0.05
a1 p/4 p/4 p/4 p/4 p/3 p/2 p

Nu1 2.431 2.558 2.747 2.863 2.411 2.401 2.597
Nu2 2.223 2.252 2.270 2.264 2.204 2.185 2.329
Nu3 2.015 1.947 1.794 1.666 1.996 1.969 2.062

Table IV.
Nusselt number
at x¼ 1 level
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quadrants and depreciates at the upper quadrant. The effect of inclined magnetic field a1

and thermal radiation parameter Rad on Nu is shown in Table IV. It is found that the
rate of heat transfer reduces with increase in inclination a1pp/2 and enhances
with higher a1Xp. An increase in the thermal radiation parameter Rad results in an
enhancement in the rate of heat transfer at all the three quadrants (Table IV).

The rate of mass transfer (Sh) is exhibited in Table V-VIII for different parametric
values. Table V represents Sh with Soret parameter So. It is noticed that the rate of
mass transfer at the lower and middle quadrants enhances with So40 and reduces
with |So|. At the upper quadrants |Sh| reduces with So40 and enhances with |So|.
Table V represents the variation of Sh with inclination a1. It is found that |Sh| reduces
with a1pp/2 and reduces with a1Xp/2 while at the upper quadrants it reduces with
a1pp/2 and enhances with a1Xp. The variation of Sh with buoyancy ratio N is shown
in Table VI. It is found that the rate of mass transfer reduces with N40 and enhances
with |N|. An increase in the Dufour parameter Du results in an enhancement |Sh| at
all the three quadrants (Table VI). The effect of chemical reaction on Sh is shown in
Table VII. The rate of mass transfer at the lower and middle quadrants reduces with
gp1.5 and enhances with gX2.5 while at the upper quadrant it enhances with g. In the
generating chemical reaction case the rate of mass transfer at all the quadrants
depreciates with g. The effect of thermal radiation on Sh is shown in Table VIII. It is

N 1 2 �0.5 �0.8 1 1 1
Du 0.01 0.01 0.01 0.01 0.03 0.05 0.07

Sh1 9.956 8.492 1.625 3.805 8.421 8.401 8.368
Sh2 2.498 2.317 1.776 2.006 2.453 2.168 2.167
Sh3 �4.959 �3.857 1.926 0.207 1.485 �4.559 �4.05

Table VI.
Sherwood number

Sh at x¼ 1 level

g 0.5 1.5 2 2.5 �0.5 �1.5 �2.5

Sh1 9.956 9.430 9.956 10.542 7.795 7.180 6.661
Sh2 2.498 2.359 2.498 2.656 1.949 1.803 1.684
Sh3 �4.959 �4.710 �4.498 �5.230 �3.898 �3.575 �3.292

Table VII.
Sherwood number

Sh at x¼ 1 level

Rad 0.05 0.5 1.5 2.5

Sh1 9.956 10.049 10.172 10.245
Sh2 2.498 2.539 2.575 2.587
Sh2 �4.959 �4.971 �5.022 �5.071

Table VIII.
Sherwood number

Sh at x¼ 1 level

So 0.5 1 �1.5 �1 �0.5 0.5 0.5 0.5
a1 p/4 p/4 p/4 p/4 p/4 p/3 p/2 p

Sh1 9.956 12.698 �0.526 2.023 4.618 10.036 9.899 8.737
Sh2 2.498 2.676 1.762 1.941 2.127 2.498 2.498 2.498
Sh3 �4.96 �7.35 4.049 1.859 �0.364 �4.959 �4.959 �4.95

Table V.
Sherwood number

at x¼ 1 level
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observed that higher the thermal radiative heat flux larger the rate of mass transfer at
all the three quadrants.

7. Conclusions

(1) At the vertical levels, the temperature reduces with |So|. At the horizontal
levels, an increase in So40 reduces the actual temperature.

(2) An increase in the inclination a1pp/2 results an enhancement in the actual
temperature and for higher inclination a1Xp we notice an enhancement in the
actual temperature at all the horizontal and vertical levels.

(3) At the higher vertical level x¼ 2/3, an increase in So40 reduces the actual
concentration in the region (0, 0.33) and enhances in the region (0.396, 0.66)
while it increase for Soo0 we notice an enhancement in the actual
concentration in the region (0, 0.33) and depreciates in the region (0.396, 0.66).

(4) An increase in the inclination a1pp/2 results in a depreciation in the actual
concentration and for higher a1Xp we notice an enhancement in the
actual concentration at all the horizontal and vertical levels.

(5) The rate of heat transfer enhances with So40 and depreciates with |So| at all
the three quadrants. The rate of heat transfer experiences an enhancement at
all the three quadrants with increase in Du.

(6) An increase in the thermal radiation parameter Rad results in an enhancement
in the rate of heat transfer at all the three quadrants. The rate of heat
transfer reduces with increase in inclination a1pp/2 and enhances with higher
a1Xp.

(7) |Sh| reduces with a1pp/2 and reduces with a1Xp/2 while at the upper
quadrants it reduces with a1pp/2 and enhances with a1Xp. An increase in
the Dufour parameter Du results in an enhancement |Sh| at all the three
quadrants. We notice that higher the thermal radiative heat flux larger the rate
of mass transfer at all the three quadrants.
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