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Simulation of mixed convection in an inclined lid-drivenusge cavity has been investigated using an incompressible
smoothed particle hydrodynamics (ISPH) method. In thigdgfithe boundary conditions on the inclined lid-driven
square cavity have been introduced for two different cassimusoidal heated and isothermal walls. The governing
equations are discretized and solved using the ISPH methdbe ISPH method, the evaluated pressure is stabilized
by relaxed density invariance in solving the pressure Roisquation. The solutions represented in isothermal lines
and ow pro les have been studied with different values atHRirdson number, phase deviation of sinusoidal heating,
and cavity inclination angle. It is found that the shear f@iaduced by lid-movement plays a more dominant role than
cavity inclination angle. A set of graphical results is praged and discussed to illustrate the effects of the pres#nc
current parameters on the ow and heat transfer charadiegsThe ef ciency of the current ISPH method is tested by
comparison with reference results.
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1. INTRODUCTION

Mixed convection ow and heat transfer in enclosures areoeintered in a number of industrial applications such as,
home ventilation, electronic cooling devices, and soldlectors. This type of heat transfer is complex because of
coupling between shear force caused by wall movement anolihyancy force by the temperature difference on the
boundary of the domain. Also, the mixed convection phenantstomes very important when the forced velocity
induced by a mechanical device like a fan has an effect equdlet free stream velocity induced by the buoyancy
force that appears due to the density variation. Mansu#i. €¢1991) checked the validity of using the discrete vector
potential model for mixed convection ow in a square annullikey concluded that the existence of the internal
square annulus inside the enclosure caused a secondawulating zone in the annulus region with a lid-driven
wall.
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NOMENCLATURE

U;V  dimensionless velocity components
X;y Cartesian coordinates (m)
X;Y dimensionless coordinates

do particle size (m)
g gravitational acceleration (m 8)

Gr  Grashof number Gr = gL3(VT72th)

k thermal conductivity (W m? K 1)

L cavity length (m)

Nu  Nusselt number

p;P  pressure (N/if), dimensionless pressure
Pr Prandtl number Pr =/

Re Reynolds number Re&L/

Ri  Richardson number Ri = GR€

T Temperature (K)

t time (s)

u;v  velocity components (m/s)

Greek Symbols
thermal diffusivity (nf s 1)
thermal expansion coef cient (K!)
cavity inclination angle ()
dimensionless temperature
phase deviation
viscosity (N's m ?)
kinematic viscosity (rAs 1)
density (kg/ni)
dimensionless time
relaxation coef cient

In many studies the walls of cavities are considered at atanhmperature or constant heat ux, while in actual
cases these thermal boundary conditions seldom exist. fry mpplied cases, such as solar energy collection and
cooling of electronic components, the thermally activelsvailay be subject to non-uniform distribution of temper-
ature due to shading or other effects in the elds. Henceajystan natural or mixed-convection uid ow and heat
transfer in the enclosures with non-uniform distributidrtemperature on the walls is important in such situations.
There are a large number of studies on both mixed and nataralection heat transfer in air- lled cavities with
non-uniform temperature distribution on their walls. $aet al. (2002) investigated numerically natural conatti
in an air- lled rectangular enclosure with a sinusoidal feerature pro le on the upper wall and adiabatic conditions
on the bottom and sidewalls. Basak et al. (2006) performednaenical study on laminar natural convection in an
air- lled square cavity with uniformly and non-uniformlydated bottom walls, and an adiabatic top wall maintaining
a constant temperature of the cold vertical walls. Bilged ¥adder (2007) carried out a numerical study on natu-
ral convection of air in rectangular enclosures with sindabtemperature pro les on side walls and insulated other
walls. Results of a numerical study on natural convectiamimir- lled rectangular enclosure with linear temperatur
distributions on both side walls were reported by Sathiyartity et al. (2007). Sivasankaran et al. (2010) conducted a
numerical study on mixed convection in a lid-driven cavitifhasinusoidal temperature distribution on the side walls
and a moving adiabatic top wall. In another numerical st&lyasankaran et al. (2011) investigated the effect of a
magnetic eld on mixed convection inside a lid-driven sqriaavity with sinusoidal temperature pro les on the side
walls. Rashidi et al. (2014) studied the magnetohydrodyoamxed convective heat transfer for an incompressible,
laminar, and electrically conducting viscoelastic uidwopast a permeable wedge with thermal radiation via a semi
analytical/numerical method, called the homotopy analyséthod (HAM). Garoosia et al. (2015a) studied numeri-
cally the steady-state mixed convection heat transfer nbned in a two-sided lid-driven cavity with several pairs
of heaters and coolers (HACs) using a two-phase mixture m@#oosia et al. (2015b) also studied natural and
mixed convection heat transfer of nano uid in a two-dimemsil square cavity with several pairs of heat source-sinks
using the nite volume method. Rashidi et al. (2016) invgated numerically the mixed convection heat transfer of
nano- uid ow in a vertical channel with sinusoidal walls der magnetic eld effect. In their model, the heat transfer
and hydrodynamic characteristics were examined.

Smoothed particle hydrodynamics (SPH) is a mesh-free Iragga computational method that has been used for
simulating uid ows (Gingold and Monoghan, 1977). In thipproach, the uid is discretized into particles, prop-
erties of the particle are de ned over a spatial distancd,the interaction of the particles is de ned using equations
of state. The particle-based nature of the de nition is adageous for capturing large deformations, as it avoids
problems such as mesh distortion associated with Lagramgésh-based methods. It also is advantageous compared
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to Eulerian xed-mesh methods, as only the material domsirequired to be meshed (Liu and Liu, 2003). A com-
prehensive review of SPH is presented by Liu and Liu (2010jctvincludes detailed descriptions, comparison with
other uid modeling approaches, and almost 400 refereriogke current study, an incompressible smoothed parti-
cle hydrodynamics (ISPH) approach is adapted to investigdited convection in an inclined lid-driven cavity with
sinusoidal heated walls. The current ISPH method has bedilized by relaxing the density invariance condition
according to Asai et al. (2012), and Aly et al. (2013) adaptexiabilized ISPH method to simulate uid- uid in-
teraction. In addition, Aly et al. (2011) applied a stalstizincompressible ISPH method to simulate uid-structure
interaction and water entry and exit of the circular cylinde

Numerical modeling of transient natural convection by gsime SPH method has also been investigated. Chan-
iotis et al. (2002) proposed a remeshing algorithm basedweakly compressible ow approach and performed a
comprehensive study for non-isothermal ows. The remeglpirocedure was tested for various benchmark problems
for uid and energy transport, which include a 1-D shockayiroblem, 2-D TaylorGreen ow, a 2-D double shear
layer, lid-driven ow in a square cavity, natural convectim a differentially heated cavity, and mixed convection in
a driven cavity. From the results, it was found that remeglmmproves the accuracy of simulations, since uniform
particle spacing was conserved in each time step. SPH dimulaf ow and energy transport using SPH were per-
formed for natural convection in a square cavity problemhweitBoussinesq and a non-Boussinesq formulation by
Szewc et al. (2011). Danis et al. (2013) modeled the trahai@hlaminar natural convection in a square cavity using
the SPH method with a discretization tool on uniform Eulemgids. Aly (2015) modeled the multi-phase ow and
natural convection in a square/cubic cavity using the ISR¥hod in two and three dimensions. In his study, the
Rayleigh-Taylor instability between two and three adjdceid layers was simulated and also the natural convection
in a square/cubic cavity was introduced with good agreeroemtpared to benchmark tests. Aly and Asai (2014)
modeled non-Darcy ows through porous media using an ex@adi8PH method. In their study, unsteady lid-driven
ow, natural convection in non-Darcy porous cavities, aratural convection in the porous medium uid interface
are examined separately by using the ISPH method. Aly andeth{2014) modeled the non-Darcy ows through
anisotropic porous media for natural/mixed convection bedt transfer in a cavity using the ISPH method. Aly et
al. (2015) studied unsteady mixed convection in a lid-drigguare cavity including circular cylinder motion using
a stabilized ISPH method. Aly (2016) studied double-diffashatural convection in an enclosure using the ISPH
method. In this study, two different cases of an enclosune\weroduced. In the rst case, the non-Darcy model for
natural convection, heat, and mass transfer in an enclesitueated with anisotropic porous media was studied. The
second case included a sloshing rod inside an enclosuewiéh free uid.

The objective of this work is to study unsteady mixed coneedn an inclined lid-driven square cavity. Here, there
are two different cases of boundary conditions for the sgjoavity. In the rst case, the top wall of the lid-driven civi
is maintained at a relatively high temperatufg), the bottom wall is maintained at a relatively low temperat(T;),
and the other side walls are adiabatic. In the second castgtHid-driven cavity and the bottom walls are adiabatic,
and the side walls have sinusoidal heafing T. +sin(2 y=L). The current ISPH technique is stabilized by relaxing
a density invariance term in solving the pressure Poissaaten (PPE). The simulation is done for low, equivalence,
and large Richardson numbers which correspond to forcedection-dominated, mixed convection-dominated, and
free convection-dominated regimes, respectively. In ta@ldi the effects of phase deviation of sinusoidal heating
and cavity inclination angle on the ow and heat transferreleteristics are presented and discussed in detail. The
ef ciency of the current ISPH method is tested by compariaith reference results.

2. SMOOTHED PARTICLE HYDRODYNAMICS

The SPH approach is based on smoothing the hydrodynamiesipies of a uid through a smoothing function/kernel
function. The uid in the solution domain is represented bguimg particles, which carry all relevant properties.
A spatial discretization using scattered particles, wisdhased on the SPH, is summarized. First, a physical scalar
function (xj;t) at a sampling point; can be represented by the following integral form:
z z
(xi;t)=  (x;OW x;h)d = (x5 )W(ry ;h)d (1)
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whereW is a weight function called by smoothing kernel function lire tSPH literature. In the smoothing kernel
function,rj = (X; X;) andh are the distance between neighbor particles and smoothiggH, respectively. For
SPH numerical analysis, the integral Eq. (1) is approxichhiea summation of contributions from neighbor particles

in the support domain,
. - . :
(xi;t) < i>= j— (X;)W(rj;h) (2
j

where the subscripisand] indicate positions of labeled particle amg is the representative mass related to particle
j - Note that the triangle bracket ; > refers to the SPH approximation of a functionThe gradient of the scalar

function can be assumed by using the above-de ned SPH ajpation as follows:
5 = i jmi( =7+ j=7)5 W(rj;h): ®)
Similarly, the divergence of a vector function can be computed as
m.
5 i= j—(; i) 5W(r;h): (4)
j

In this paper, the quintic spline function is utilized as arla function for two-dimensional problems:

%(3 9° 62 g°+151 ° 0 g<1

7 B 9° 62 0% 1 g<2 _
0 q 3

A Laplacian could be derived directly from the original SPppeoximation of a function in Eq. (4), but this
approach may lead to a loss of resolution. The second deevat a function ; can be computed approximately

according to Morris et al. (1997) by an approximation expi@ssuch as the following:

SECO KR .

i

where is a parameter to avoid a zero dominator, and its value islysgigen by 2 = 0:0001h2.

3. GOVERNING EQUATIONS

The continuity, momentum, and energy equations for thedamand unsteady-state mixed convection in the two-
dimensional cavity can be written in a Lagrangian desaipfor the dimensional form as in references such as
Szewc et al. (2011), Danis et al. (2013), Aly (2015), Aly anshA(2014), Aly and Ahmed (2014), Aly et al. (2015),

and Aly (2016):

du dv
ax + dy 0; )
D_U_ }d_p+v dz_u+d2_u + (T T)sin( ) (8)
at = Tdx Y @@ gy T c !
Dv _ 1dp d>v  d?v _
— = _d_y+v W+d_3/2 +g (T Tocos(); )
DT d?T  d?T
@ o Tap (10)
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whereu andv are the velocity vector ix andy directions, respectively is the pressure, is the thermal expansion
coef cient, is the dynamic viscosity of the uid, is the density of the uid, is the uid thermal diffusivity, andl
is the temperature.

We now introduce the following dimensionless variables:

X=x=L;, Y =y=L, U=u=lp; V=v=\p; P=p=U3 =T T=Th T¢ (11)
Gr=(g L3(Th T))=(v?); Pr=v=; = tUg=L;

whereL is a characteristic lengtiy, is the maximum temperatur@; is the minimum temperature, Pr is the Prandtl
number, and Gr is the Grashof number. The equations aboVe lbeuwvritten in a dimensionless form as

du dv

R+W:O; (12)
Z_Uz 3_§+% %Jrg'%uz +% sin( ); (13)
3_= RiPr 3>2<2+:i2 : (15)

It should be mentioned that the ratio offRe? is the mixed convection parameter called the Richardsorbenm
Ri and is a measure of the relative strength of the naturalexiion and forced convection for a particular problem.
The dimensionless boundary conditions for O are as follows:

Case 1.
8
2U=1;Vv=0;, =1;,Y=1;
>U=V=0, =0; Y=0; (16)
U=V =0;d=dX=0; X =0andX =
Case 2.
8
§U=1;V=O;d=dY=0;Y=1;
U=V =0;d=dY=0; Y=0;
' . ’ ' (17)
3U=V=0; =sin2 Y); X =0;
"U=V=0; =sin2 Y+ ) X=1:

The local Nusselt number at NXi(), which describes the ratio of convective to conductive tramsfer across the
top wall in case 1, is de ned as
d
Nu= — : 18
v o (18)
For the majority of design problems, the knowledge of theaye Nusselt number is very useful. The average
Nusselt number is obtained through the integration
Z L

Num = 1 Nu(X )dX: (29)
L x-o

Volume 8, Issue 4, 2016



342 Aly et al.

4. NUMERICAL METHOD

The dimensionless governing equations and boundary donglitvere solved using the ISPH method. The ISPH
algorithm is implemented in a semi-implicit form in ordergolve the incompressible viscous ow equations. The
ISPH method is based on the calculation of an intermedidteig from a momentum equation where the pressure
gradients are omitted. Then, the pressure is evaluatedghrsolving the pressure Poisson equation. The PPE after
SPH interpolation is solved by a preconditioned diagonalisg conjugate gradient (PCG) method as in Meijerink
and van der Vorst (1977) with a convergence tolerance (=100°9). Finally, the velocity is corrected using the
evaluated pressures.

The classical projection method such as in Chorin (19683éluo solve the velocity-pressure coupling problem.
The discretized form of Egs. (12—15) is split into two patite rst being the prediction step based on viscous and
external forces:

Uu u"_ 1 U du " Gr
N — — 4+ - =N qj .
Re ax2 " davz ‘T re o) (20)

\VARRAVAL id2V+d2V” Gr

Re dx2 dv2 R€

In the second step, the pressure is calculated using thiizdipressure Poisson equation corresponding to Asai

et al. (2012), which includes density invariance and véjadivergence into the pressure Poisson equation as fallows

" cos( ): (21)

dzpn+l 1 dUi 0
= — — 4+ . 22
dX;X; dX; 2 (22)
where is the relaxation coef cient, an 1 can be decided from pre-analysis calculation as Asai et al.
(2012).
In the third step, the real velocity values are obtainedgigiie following correction:
dpn+l
umt =u —_— 23
dx ' (23)
n+1 dpn+l
\Y =V ay (24)
For the thermal ow problems, in this step the time discratian of the energy equation is introduced:
o? @ "
n+l — n + : 25
RePr dXx2 dy? (25)

5. BOUNDARY CONDITIONS

The proper implementation of the boundaries has been a comopic in SPH development during recent years.
The boundary condition on the rigid bodies has an importalet in preventing penetration and reducing the error
related to truncation of the kernel function. Here, we useldummy particles to prevent penetration and reduce
the error of the truncated kernel. Dummy particles are rdytistributed at the initial state. The dummy particles
have zero velocities through the left, right, and bottonesidf the square cavity. In the top side, the dummy particles
have horizontal velocity 1.0 m/s. In this study, we solveal pinessure Poisson equation for all dummy particles to get
repulsive force for preventing penetration. The dummy htzump particles have the same velocity and temperature as
wall boundary particles.
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6. RESULTS AND DISCUSSION

Here we present numerical results for unsteady mixed caiovem an inclined lid-driven cavity with sinusoidal
heated walls. In Table 1 we present the values of number ¢itfesr and relaxation coef cient for each model used
in this study.

Figure 1 presents the schematic diagrams of the two-dimeaksquare cavity considered in this study. There are
two different cases for boundary conditions in this prohlémthe rst case, the top wall of the lid-driven cavity is
maintained at a relatively high temperatufig), the bottom wall is maintained at a relatively low temparat(T;),
and the other side walls are adiabatic. In the second castgtHid-driven cavity and the bottom walls are adiabatic,
and the side walls have sinusoidal heafing= T, + sin(2 y=L). The comparison of temperature and velocity at
the mid-section of the cavityX( = 0:5) using the current ISPH method with Aly (2015, 2016) for Gr 80land
Re =400 are shown in Fig. 2. Here, three different resolstafrparticle sizegy = 0.005, 0.01 and 0.02 m, have been
introduced using the ISPH method. In this comparison, tealte of the temperature and horizontal velocity at high
resolution of particle sizdy = 0.005 m (200 200) using the ISPH method have good agreement compareétsuw
et al. (1993) and Khanafer and Chamkha (1999). The currenpacdson was reported previously in our work as Aly
et al. (2015).

Figures 3 and 4 show the typical contour maps for isothermsvaiocity vector elds at various values of the
Richardson number, Ri = 0.0001, 0.000625, 0.01, 1, and peotisely. In this study, the value of Grashof number
is taken as Gr = 100. As is clear from the de nition of the Riason number, the value of Ri provides a measure
of the importance of buoyancy-driven natural convectidatiee to the lid-driven forced convection. For very small
values of Ri (Ri = 0.00010.000625, a forced convection-dominated regime), thezbatal velocity behavior in a
2D lid-driven cavity is characterized by a cell near the dattwall and concentric curves around the top wall due
to the lid velocity. The isotherms are clustered heavilyrriea bottom surface of the cavity. In the remaining area
of the cavity, the temperature gradients are weak and thptiesthat the temperature differences are very small in

TABLE 1: Values of number of particles and relaxation coef cientéach model

ISPH (50 50) ISPH (100 100) ISPH (200 200)
Number of particles 3136 11236 42436
Relaxation coef cient 0.25 0.25 0.1

FIG. 1: Initial schematic for lid-driven cavity with two boundarases: case (1) the top wall has high temperature
and bottom wall has low temperature, and case (2) the sids tale sinusoidal heating
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0.5 — Prewsat ISPH (4, =0.005)

Pomast 13PH (4,=0.01)
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0.7 4 ¢ Iwatswet 2. {1993)
a Ehanafer 2nd Chamk he (15957
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9 Iwatss et al {1993)
B Ebanafer ad Cham ha{ 1999}

FIG. 2: Comparison ofa) temperature at the mid-section of the caviXy £ 0.5) andb) U-velocity at the mid-section
of the cavity K = 0.5) with Iwatsu et al. (1993) and Khanafer and Chamkha @)1 8% Gr = 100 and Re = 400

the interior region of the cavity. For low values of Ri (Ri 0@, mixed convection-dominated regime), the buoyancy
effect is of relatively comparable magnitude to the shefacetiue to the sliding lid. The velocity vector elds show
heavy concentric narrow curves around the top wall and a walenear the bottom wall. The isotherms spread
upward, indicating moderate temperature gradients in #ngcal direction. For equivalence and large values of Ri
(Ri =1 and 4, natural convection-dominated regime), theybnoy effect is dominant and the velocity vector elds
show narrow concentric curves around the top wall and a watlécthe other part of the cavity. The isotherms spread
further upward, showing low distortion. A similar phenormarcontinues for all the inclination angles at all modes.
This clearly indicates that the shear force induced by lm«ement plays a more dominant role than cavity inclination
angle.

The effects of Richardson numbers Ri and the inclinatiodeangf the cavity on the temperature pro les at the
mid-section of an inclined cavity{ = 0.5) at Grashof number Gr = 100 and Prandtl number Pr = 0& $laown in
Fig. 5. For equivalence values of Ri (Ri = 1, natural conv@ciilominated regime), the temperatures increase linearly
asY increases. The reverse effects region for temperaturdgrm which the temperature departs from its normal
behavior, changes as the Richardson number changes. Eisgeifects region for temperature pro les at Ri =0.0001
appears at around = 0.5, while the reverse effects region for temperature laoat Ri = 0.000625 appears at around
Y =0.7. This is relevant because as the Richardson numbeaises, the effect of the top lid and forced convection
decreases; hence the thermal boundary layers along theadisief the cavity thicken. Also, with an increase in
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FIG. 3: Isothermal lines for various Richardson numbers, Ri = 010@0000625, 0.01, 1, and 4, respectively, and
cavity inclination angles an inclination angle of cavity= 0 , 30 , and 60 at Grashof number Gr = 100 and Prandtl

number Pr=0.71
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FIG. 4: Velocity vector elds for various Richardson numbers, Ri £001, 0.000625, 0.01, 1, and 4, respectively,
and cavity inclination angles an inclination angle of cavit= 0 , 30, and 60 at Grashof number Gr = 100 and
Prandtl number Pr=0.71
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FIG. 5: Temperature pro les at the mid-section of an inclined cagX = 0.5) under the effects of Richardson
numbers, Ri = 0.0001, 0.000625, 0.01, and 1, with cavityimation angles an inclination angle of cavity= 0 ,
30, and 60 at Grashof number Gr = 100 and Prandtl number Pr=0.71

Richardson number the temperature difference penettaesore of the cavity and uniformly distributed isotherms
are formed inside the cavity. It seems that the variatiohmefnclination angle does not affect the temperature pgo le
signi cantly. Figure 6 presents the average Nusselt nurnbeer the effect of inclination angle and time histories of
the average Nusselt number under the effects of inclinatie. It is found that as the Richardson number increases
from 0.0001 to 4, the value of the average Nusselt numberedses strongly. Then the high viscosity reduces the
heat transfer rate. It is observed that the inclination amgls a slight effect on the average Nusselt number. As the
Richardson number increases from 0.01 to 4, the horizoeiakity pro les at inclination angle Odecrease and its
behavior changes when the inclination angle increases tpa8Oobserved in Fig. 7. Moreover, the vertical velocity
pro les increase as the Richardson number decreases froifd.8@01 at a constant value of Gr = 100, as seen in Fig. 8.
Figures 9 and 10 show isotherms and velocity vector eldsifierent Richardson numbers and phase devia-
tions, respectively, for Gr = 100 and Prandtl number Pr = OF&k very small values of Ri (Ri = 0.0001, forced

5.5 2.0
a) o b) =7 o
5.0 - Pl 1.8 L — 10
5] ¥=30° Re=10, Ri=1, Gr=100 7=30°
) 1.6
Ry o o O
4.0 v=60 — =60
1.4
3.5 4 1
1.2
3.0
B s 1.0
= 254 =
= Z 0.8
2.0 =
1.5 0.6 -
1.0 0.4 4
0.5+ 0.2
0.0 T T T T LB T T T 0.0 . . - . : .
00 05 10 15 20 25 30 35 40 0 5 10 15 20 25
Ri T

FIG. 6: The average Nusselt number under the effedadRichardson number with inclination angle afi) time
histories and inclination angle
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FIG. 7: Horizontal velocity pro les at the mid-section of an inatid cavity X = 0.5) under the effects of Richardson
number Ri =0.01, 1.0, and 4 with two values of an inclinatiagla, =0 and 60

convection-dominated regime), for all phase deviationssatered, the core region of the cavity is isotherms while a
steep temperature gradient occurs within a thin region theaside walls. As the Richardson number increases, the
effect of the top lid and forced convection decreases; héfrecthermal boundary layers along the sidewalls of the cav-
ity thicken. Also, with the increase in Richardson numbertdmperature difference penetrates the core of the cavity
and uniformly distributed isotherms are formed inside theity. Here, the variation of the phase deviation clearly
affects the in isothermal lines. The velocity vector bebawm a two-dimensional lid-driven cavity is characterized
by the cell near the bottom wall and concentric curves ardbhadop wall due to the lid velocity. The behavior of
the velocity vector under the effects of Richardson numbsrtieen disused in detail previously. Due to the constant
value of Grashof number (Gr = 100) the uid ow is dominated Hye moving top lid; the variation of the phase
deviation does not affect the ow pattern signi cantly.

Figure 11 shows time histories for temperature distrimgifrom unsteady state to steady state at Richardson
numbers Ri = 1, phase deviation= =2, Grashof number Gr = 100, and Prandtl number Pr = 0.71. Thewrur

FIG. 8: Vertical velocity pro les under the effects of Richardsommber Ri = 0.0001, 0.000625, 0.01, 1.0, and 4
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FIG. 9: Isothermal lines for various Richardson numbers, Ri = 0100001, 1, and 4, respectively, and phase devia-
tions =0; =2,and atGrashof number Gr =100 and Prandtl number Pr=0.71
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FIG. 10: Velocity vector elds for various Richardson numbers, Ri £001, 0.01, and 1, respectively, and phase
deviations, =0; =2,and at Grashof number Gr =100 and Prandtl number Pr=0.71

shapshots show the heat conduction from heating sinussidkalvalls and particle motion inside the lid-driven cavity
As expected, as the simulation starts a little mixed conwrds obtained and the uid motion and the temperature
distributions are limited to the region beside the heateltlaral top lid-driven wall. As the time increases, the mixed
convection increases and the snapshots of uid motion amgpézature start to occupy the ow domain. The effects
of phase deviations with two values of Richardson number Ri04, 1.0 on the temperature and horizontal velocity
pro les at the mid-section of an inclined cavit)X(= 0.5) have been introduced in Figs. 12-14. In Fig. 12, the
temperature pro les are clearly affected under variatiohghase deviation and Richardson number. The temperature
pro les are decreased as phase deviations increase from .QMoreover, the horizontal and vertical velocity pro les
have a slight change as phase deviations increase from 0 Tde vertical velocity pro les are decrease as the
Richardson number increases from 0.01 to 1.0.
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FIG. 11: Time histories for temperature distributions from unstestdte to steady state at Richardson numbers Ri =1,
phase deviation = =2, Grashof number Gr = 100, and Prandtl number Pr=0.71

7. CONCLUSION

The problem of unsteady mixed convective ow and heat transf an inclined lid-driven square cavity is formu-
lated and solved numerically by using incompressible shebiparticle hydrodynamics. In the ISPH method, the
evaluated pressure is stabilized by relaxed density iaxag in solving the pressure Poisson equation. Two differen

FIG. 12: Temperature at mid-section of cavitf (= 0.5) under the effects of phase deviations; 0; =2, and ,
with Richardson number Ri = 0.01, 1.0
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FIG. 13: Horizontal velocity pro les at mid-section of cavityX( = 0.5) under the effects of phase deviations; 0,
=2, and , with Richardson number Ri =0.01, 1.0

FIG. 14: Vertical velocity pro les at mid-section of cavity{ = 0.5) under the effects of phase deviations,0; =2,
and , with Richardson number Ri = 0.01, 1.0

cases of temperature condition in an inclined lid-drivemesg cavity were simulated and discussed under parametric
conditions with graphical results. As it is expected, thathiteansfer mechanisms and the ow characteristics inside
the cavity are strongly dependent on the Richardson nuribershear force induced by lid-movement plays a more
dominant role than cavity inclination angle. Due to the ¢ansvalue of Grashof number, Gr = 100, the uid ow is
dominated by the moving top lid and the variation of the phdeaation does not affect the ow pattern signi cantly.
The ISPH tool shows robust performance in simulating theachbonvection in different boundary cases for a square
cavity and it can be easily applied to complicated and frefasa problems. The ISPH solution is validated by direct
comparisons with previously published work and the reslitsv good agreements with the references.
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