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Simulation of mixed convection in an inclined lid-driven square cavity has been investigated using an incompressible
smoothed particle hydrodynamics (ISPH) method. In this study, the boundary conditions on the inclined lid-driven
square cavity have been introduced for two different cases of sinusoidal heated and isothermal walls. The governing
equations are discretized and solved using the ISPH method.In the ISPH method, the evaluated pressure is stabilized
by relaxed density invariance in solving the pressure Poisson equation. The solutions represented in isothermal lines
and �ow pro�les have been studied with different values of Richardson number, phase deviation of sinusoidal heating,
and cavity inclination angle. It is found that the shear force induced by lid-movement plays a more dominant role than
cavity inclination angle. A set of graphical results is presented and discussed to illustrate the effects of the presence of
current parameters on the �ow and heat transfer characteristics. The ef�ciency of the current ISPH method is tested by
comparison with reference results.
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1. INTRODUCTION

Mixed convection �ow and heat transfer in enclosures are encountered in a number of industrial applications such as,
home ventilation, electronic cooling devices, and solar collectors. This type of heat transfer is complex because of
coupling between shear force caused by wall movement and thebuoyancy force by the temperature difference on the
boundary of the domain. Also, the mixed convection phenomena becomes very important when the forced velocity
induced by a mechanical device like a fan has an effect equal to the free stream velocity induced by the buoyancy
force that appears due to the density variation. Mansutti etal. (1991) checked the validity of using the discrete vector
potential model for mixed convection �ow in a square annulus. They concluded that the existence of the internal
square annulus inside the enclosure caused a secondary recirculating zone in the annulus region with a lid-driven
wall.

1940–2503/16/$35.00 c
 2016 by Begell House, Inc. 337



338 Aly et al.

NOMENCLATURE

d0 particle size (m)
g gravitational acceleration (m s� 2)

Gr Grashof number
�

Gr = g� L 3 (Th � Tc )
v2

�

k thermal conductivity (W m� 1 K � 1)
L cavity length (m)
Nu Nusselt number
p; P pressure (N/m2), dimensionless pressure
Pr Prandtl number Pr =� /�
Re Reynolds number Re =UL/�
Ri Richardson number Ri = Gr=Re2

T Temperature (K)
t time (s)
u; v velocity components (m/s)

U; V dimensionless velocity components
x; y Cartesian coordinates (m)
X; Y dimensionless coordinates

Greek Symbols
� thermal diffusivity (m2 s� 1)
� thermal expansion coef�cient (K� 1)

 cavity inclination angle (� )
� dimensionless temperature
� phase deviation
� viscosity (N s m� 2)
� kinematic viscosity (m2 s� 1)
� density (kg/m3)
� dimensionless time

 relaxation coef�cient

In many studies the walls of cavities are considered at a constant temperature or constant heat �ux, while in actual
cases these thermal boundary conditions seldom exist. In many applied cases, such as solar energy collection and
cooling of electronic components, the thermally active walls may be subject to non-uniform distribution of temper-
ature due to shading or other effects in the �elds. Hence, study on natural or mixed-convection �uid �ow and heat
transfer in the enclosures with non-uniform distribution of temperature on the walls is important in such situations.
There are a large number of studies on both mixed and natural convection heat transfer in air-�lled cavities with
non-uniform temperature distribution on their walls. Sarris et al. (2002) investigated numerically natural convection
in an air-�lled rectangular enclosure with a sinusoidal temperature pro�le on the upper wall and adiabatic conditions
on the bottom and sidewalls. Basak et al. (2006) performed a numerical study on laminar natural convection in an
air-�lled square cavity with uniformly and non-uniformly heated bottom walls, and an adiabatic top wall maintaining
a constant temperature of the cold vertical walls. Bilgen and Yedder (2007) carried out a numerical study on natu-
ral convection of air in rectangular enclosures with sinusoidal temperature pro�les on side walls and insulated other
walls. Results of a numerical study on natural convection inan air-�lled rectangular enclosure with linear temperature
distributions on both side walls were reported by Sathiyamoorthy et al. (2007). Sivasankaran et al. (2010) conducted a
numerical study on mixed convection in a lid-driven cavity with sinusoidal temperature distribution on the side walls
and a moving adiabatic top wall. In another numerical study,Sivasankaran et al. (2011) investigated the effect of a
magnetic �eld on mixed convection inside a lid-driven square cavity with sinusoidal temperature pro�les on the side
walls. Rashidi et al. (2014) studied the magnetohydrodynamic mixed convective heat transfer for an incompressible,
laminar, and electrically conducting viscoelastic �uid �ow past a permeable wedge with thermal radiation via a semi
analytical/numerical method, called the homotopy analysis method (HAM). Garoosia et al. (2015a) studied numeri-
cally the steady-state mixed convection heat transfer of nano�uid in a two-sided lid-driven cavity with several pairs
of heaters and coolers (HACs) using a two-phase mixture model. Garoosia et al. (2015b) also studied natural and
mixed convection heat transfer of nano�uid in a two-dimensional square cavity with several pairs of heat source-sinks
using the �nite volume method. Rashidi et al. (2016) investigated numerically the mixed convection heat transfer of
nano-�uid �ow in a vertical channel with sinusoidal walls under magnetic �eld effect. In their model, the heat transfer
and hydrodynamic characteristics were examined.

Smoothed particle hydrodynamics (SPH) is a mesh-free Lagrangian computational method that has been used for
simulating �uid �ows (Gingold and Monoghan, 1977). In this approach, the �uid is discretized into particles, prop-
erties of the particle are de�ned over a spatial distance, and the interaction of the particles is de�ned using equations
of state. The particle-based nature of the de�nition is advantageous for capturing large deformations, as it avoids
problems such as mesh distortion associated with Lagrangian mesh-based methods. It also is advantageous compared
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to Eulerian �xed-mesh methods, as only the material domain is required to be meshed (Liu and Liu, 2003). A com-
prehensive review of SPH is presented by Liu and Liu (2010), which includes detailed descriptions, comparison with
other �uid modeling approaches, and almost 400 references.In the current study, an incompressible smoothed parti-
cle hydrodynamics (ISPH) approach is adapted to investigate mixed convection in an inclined lid-driven cavity with
sinusoidal heated walls. The current ISPH method has been stabilized by relaxing the density invariance condition
according to Asai et al. (2012), and Aly et al. (2013) adapteda stabilized ISPH method to simulate �uid-�uid in-
teraction. In addition, Aly et al. (2011) applied a stabilized incompressible ISPH method to simulate �uid-structure
interaction and water entry and exit of the circular cylinder.

Numerical modeling of transient natural convection by using the SPH method has also been investigated. Chan-
iotis et al. (2002) proposed a remeshing algorithm based on aweakly compressible �ow approach and performed a
comprehensive study for non-isothermal �ows. The remeshing procedure was tested for various benchmark problems
for �uid and energy transport, which include a 1-D shock-tube problem, 2-D TaylorGreen �ow, a 2-D double shear
layer, lid-driven �ow in a square cavity, natural convection in a differentially heated cavity, and mixed convection in
a driven cavity. From the results, it was found that remeshing improves the accuracy of simulations, since uniform
particle spacing was conserved in each time step. SPH simulation of �ow and energy transport using SPH were per-
formed for natural convection in a square cavity problem with a Boussinesq and a non-Boussinesq formulation by
Szewc et al. (2011). Danis et al. (2013) modeled the transient and laminar natural convection in a square cavity using
the SPH method with a discretization tool on uniform Eulerian grids. Aly (2015) modeled the multi-phase �ow and
natural convection in a square/cubic cavity using the ISPH method in two and three dimensions. In his study, the
Rayleigh-Taylor instability between two and three adjacent �uid layers was simulated and also the natural convection
in a square/cubic cavity was introduced with good agreementcompared to benchmark tests. Aly and Asai (2014)
modeled non-Darcy �ows through porous media using an extended ISPH method. In their study, unsteady lid-driven
�ow, natural convection in non-Darcy porous cavities, and natural convection in the porous medium�uid interface
are examined separately by using the ISPH method. Aly and Ahmed (2014) modeled the non-Darcy �ows through
anisotropic porous media for natural/mixed convection andheat transfer in a cavity using the ISPH method. Aly et
al. (2015) studied unsteady mixed convection in a lid-driven square cavity including circular cylinder motion using
a stabilized ISPH method. Aly (2016) studied double-diffusive natural convection in an enclosure using the ISPH
method. In this study, two different cases of an enclosure were introduced. In the �rst case, the non-Darcy model for
natural convection, heat, and mass transfer in an enclosuresaturated with anisotropic porous media was studied. The
second case included a sloshing rod inside an enclosure �lled with free �uid.

The objective of this work is to study unsteady mixed convection in an inclined lid-driven square cavity. Here, there
are two different cases of boundary conditions for the square cavity. In the �rst case, the top wall of the lid-driven cavity
is maintained at a relatively high temperature (Th ), the bottom wall is maintained at a relatively low temperature (Tc),
and the other side walls are adiabatic. In the second case, the top lid-driven cavity and the bottom walls are adiabatic,
and the side walls have sinusoidal heatingT = Tc + sin(2� y=L). The current ISPH technique is stabilized by relaxing
a density invariance term in solving the pressure Poisson equation (PPE). The simulation is done for low, equivalence,
and large Richardson numbers which correspond to forced convection-dominated, mixed convection-dominated, and
free convection-dominated regimes, respectively. In addition, the effects of phase deviation of sinusoidal heating
and cavity inclination angle on the �ow and heat transfer characteristics are presented and discussed in detail. The
ef�ciency of the current ISPH method is tested by comparisonwith reference results.

2. SMOOTHED PARTICLE HYDRODYNAMICS

The SPH approach is based on smoothing the hydrodynamics properties of a �uid through a smoothing function/kernel
function. The �uid in the solution domain is represented by moving particles, which carry all relevant properties.

A spatial discretization using scattered particles, whichis based on the SPH, is summarized. First, a physical scalar
function� (x i ; t) at a sampling pointx i can be represented by the following integral form:

�( x i ; t) =
Z

�( x j ; t)W (x i � x j ; h)d� =
Z

�( x j ; t)W (r ij ; h)d� (1)
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whereW is a weight function called by smoothing kernel function in the SPH literature. In the smoothing kernel
function,r ij = ( x i � x j ) andh are the distance between neighbor particles and smoothing length, respectively. For
SPH numerical analysis, the integral Eq. (1) is approximated by a summation of contributions from neighbor particles
in the support domain,

�( x i ; t) � < � i > = � j
mj

� j
�( x j ; t)W (r ij ; h) (2)

where the subscriptsi andj indicate positions of labeled particle andmj is the representative mass related to particle
j . Note that the triangle bracket< � i > refers to the SPH approximation of a function� . The gradient of the scalar
function can be assumed by using the above-de�ned SPH approximation as follows:

5 � i = � i � j mj (� i =� 2
i + � j =� 2

j ) 5 W (r ij ; h): (3)

Similarly, the divergence of a vector function� i can be computed as

5 � i = � j
mj

� j
(� j � � i ) � 5 W (r ij ; h): (4)

In this paper, the quintic spline function is utilized as a kernel function for two-dimensional problems:

W (q; h) =
7

478� h2

8
>>>><

>>>>:

(3 � q)5 � 6(2 � q)5 + 15(1 � q)5; 0 � q < 1

(3 � q)5 � 6(2 � q)5; 1 � q < 2

(3 � q)5; 2 � q < 3

0; q � 3

: (5)

A Laplacian could be derived directly from the original SPH approximation of a function in Eq. (4), but this
approach may lead to a loss of resolution. The second derivative of a function� i can be computed approximately
according to Morris et al. (1997) by an approximation expression such as the following:

5 2
( � i ) = � j mj

�
� i + � j

� i � j

(r i � r j ) � 5 i Wij

r 2
ij + � 2

�
(� i � � j ); (6)

where� is a parameter to avoid a zero dominator, and its value is usually given by � 2 = 0 :0001h2.

3. GOVERNING EQUATIONS

The continuity, momentum, and energy equations for the laminar and unsteady-state mixed convection in the two-
dimensional cavity can be written in a Lagrangian description for the dimensional form as in references such as
Szewc et al. (2011), Danis et al. (2013), Aly (2015), Aly and Asai (2014), Aly and Ahmed (2014), Aly et al. (2015),
and Aly (2016):

du
dx

+
dv
dy

= 0 ; (7)

Du
dt

= �
1
�

dp
dx

+ v
�

d2u
dx2 +

d2u
dy2

�
+ g� (T � Tc) sin(
 ); (8)

Dv
dt

= �
1
�

dp
dy

+ v
�

d2v
dx2 +

d2v
dy2

�
+ g� (T � Tc) cos(
 ); (9)

DT
dt

= �
�

d2T
dx2 +

d2T
dy2

�
; (10)
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whereu andv are the velocity vector inx andy directions, respectively,P is the pressure,� is the thermal expansion
coef�cient, is the dynamic viscosity of the �uid,� is the density of the �uid,� is the �uid thermal diffusivity, andT
is the temperature.

We now introduce the following dimensionless variables:

(
X = x=L; Y = y=L; U = u=U0; V = v=V0; P = p=� U2

0 ; � = T � Tc=Th � Tc

Gr = ( g� L 3(Th � Tc))=(v2); Pr = v=� ; � = tU0=L;
(11)

whereL is a characteristic length,Th is the maximum temperature,Tc is the minimum temperature, Pr is the Prandtl
number, and Gr is the Grashof number. The equations above could be written in a dimensionless form as

dU
dX

+
dV
dY

= 0 ; (12)

DU
d�

= �
dP
dX

+
1

Re

�
d2U
dX 2 +

d2U
dY2

�
+

Gr

Re2 � sin(
 ); (13)

DV
d�

= �
dP
dY

+
1

Re

�
d2V
dX 2 +

d2V
dY2

�
+

Gr
Re2 � cos(
 ); (14)

D �
d�

=
1

RePr

�
d2�
dX 2 +

d2�
dY2

�
: (15)

It should be mentioned that the ratio of Gr=Re2 is the mixed convection parameter called the Richardson number
Ri and is a measure of the relative strength of the natural convection and forced convection for a particular problem.

The dimensionless boundary conditions for� � 0 are as follows:
Case 1.

8
><

>:

U = 1 ; V = 0 ; � = 1; Y = 1 ;

U = V = 0 ; � = 0; Y = 0 ;
U = V = 0 ; d� =dX = 0; X = 0 andX = 1 :

(16)

Case 2.

8
>>><

>>>:

U = 1 ; V = 0 ; d� =dY = 0; Y = 1 ;
U = V = 0 ; d� =dY = 0; Y = 0 ;

U = V = 0 ; � = sin(2 � Y ); X = 0 ;
U = V = 0 ; � = sin(2 � Y + � ); X = 1 :

(17)

The local Nusselt number at Nu(X ), which describes the ratio of convective to conductive heat transfer across the
top wall in case 1, is de�ned as

Nu =
�

d�
dY

�

Y =1
: (18)

For the majority of design problems, the knowledge of the average Nusselt number is very useful. The average
Nusselt number is obtained through the integration

Num =
1
L

Z L

X =0
Nu(X )dX: (19)
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4. NUMERICAL METHOD

The dimensionless governing equations and boundary conditions were solved using the ISPH method. The ISPH
algorithm is implemented in a semi-implicit form in order tosolve the incompressible viscous �ow equations. The
ISPH method is based on the calculation of an intermediate velocity from a momentum equation where the pressure
gradients are omitted. Then, the pressure is evaluated through solving the pressure Poisson equation. The PPE after
SPH interpolation is solved by a preconditioned diagonal scaling conjugate gradient (PCG) method as in Meijerink
and van der Vorst (1977) with a convergence tolerance (=1.0� 10� 9). Finally, the velocity is corrected using the
evaluated pressures.

The classical projection method such as in Chorin (1968) is used to solve the velocity-pressure coupling problem.
The discretized form of Eqs. (12–15) is split into two parts,the �rst being the prediction step based on viscous and
external forces:

U � � Un

� �
=

1
Re

�
d2U
dX 2 +

d2U
dY2

� n

+
Gr
Re2 � n sin(
 ); (20)

V � � V n

� �
=

1
Re

�
d2V
dX 2 +

d2V
dY2

� n

+
Gr
Re2 � n cos(
 ): (21)

In the second step, the pressure is calculated using the stabilized pressure Poisson equation corresponding to Asai
et al. (2012), which includes density invariance and velocity divergence into the pressure Poisson equation as follows:

d2pn +1

dX i X i
=

1
� �

�
dU�

i

dX i

�
+ 


� 0 � � �

� � 2 ; (22)

where
 is the relaxation coef�cient, and0 � 
 � 1 can be decided from pre-analysis calculation as Asai et al.
(2012).

In the third step, the real velocity values are obtained using the following correction:

Un +1 = U � � � �
�

dpn +1

dX

�
; (23)

V n +1 = V � � � �
�

dpn +1

dY

�
: (24)

For the thermal �ow problems, in this step the time discretization of the energy equation is introduced:

� n +1 = � n �
� �

RePr

�
d2�
dX 2 +

d2�
dY2

� n

: (25)

5. BOUNDARY CONDITIONS

The proper implementation of the boundaries has been a common topic in SPH development during recent years.
The boundary condition on the rigid bodies has an important role in preventing penetration and reducing the error
related to truncation of the kernel function. Here, we used the dummy particles to prevent penetration and reduce
the error of the truncated kernel. Dummy particles are regularly distributed at the initial state. The dummy particles
have zero velocities through the left, right, and bottom sides of the square cavity. In the top side, the dummy particles
have horizontal velocity 1.0 m/s. In this study, we solved the pressure Poisson equation for all dummy particles to get
repulsive force for preventing penetration. The dummy boundary particles have the same velocity and temperature as
wall boundary particles.
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6. RESULTS AND DISCUSSION

Here we present numerical results for unsteady mixed convection in an inclined lid-driven cavity with sinusoidal
heated walls. In Table 1 we present the values of number of particles and relaxation coef�cient for each model used
in this study.

Figure 1 presents the schematic diagrams of the two-dimensional square cavity considered in this study. There are
two different cases for boundary conditions in this problem. In the �rst case, the top wall of the lid-driven cavity is
maintained at a relatively high temperature (Th ), the bottom wall is maintained at a relatively low temperature (Tc),
and the other side walls are adiabatic. In the second case, the top lid-driven cavity and the bottom walls are adiabatic,
and the side walls have sinusoidal heatingT = Tc + sin(2 � y=L). The comparison of temperature and velocity at
the mid-section of the cavity (X = 0 :5) using the current ISPH method with Aly (2015, 2016) for Gr = 100 and
Re = 400 are shown in Fig. 2. Here, three different resolutions of particle size,d0 = 0.005, 0.01 and 0.02 m, have been
introduced using the ISPH method. In this comparison, the results of the temperature and horizontal velocity at high
resolution of particle sized0 = 0.005 m (200� 200) using the ISPH method have good agreement compared to Iwatsu
et al. (1993) and Khanafer and Chamkha (1999). The current comparison was reported previously in our work as Aly
et al. (2015).

Figures 3 and 4 show the typical contour maps for isotherms and velocity vector �elds at various values of the
Richardson number, Ri = 0.0001, 0.000625, 0.01, 1, and 4, respectively. In this study, the value of Grashof number
is taken as Gr = 100. As is clear from the de�nition of the Richardson number, the value of Ri provides a measure
of the importance of buoyancy-driven natural convection relative to the lid-driven forced convection. For very small
values of Ri (Ri = 0.0001� 0.000625, a forced convection-dominated regime), the horizontal velocity behavior in a
2D lid-driven cavity is characterized by a cell near the bottom wall and concentric curves around the top wall due
to the lid velocity. The isotherms are clustered heavily near the bottom surface of the cavity. In the remaining area
of the cavity, the temperature gradients are weak and this implies that the temperature differences are very small in

TABLE 1: Values of number of particles and relaxation coef�cient foreach model

ISPH (50� 50) ISPH (100� 100) ISPH (200� 200)

Number of particles 3136 11236 42436

Relaxation coef�cient 0.25 0.25 0.1

FIG. 1: Initial schematic for lid-driven cavity with two boundary cases: case (1) the top wall has high temperature
and bottom wall has low temperature, and case (2) the side walls have sinusoidal heating
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FIG. 2: Comparison of(a) temperature at the mid-section of the cavity (X = 0.5) and(b) U-velocity at the mid-section
of the cavity (X = 0.5) with Iwatsu et al. (1993) and Khanafer and Chamkha (1999) for Gr = 100 and Re = 400

the interior region of the cavity. For low values of Ri (Ri = 0.01, mixed convection-dominated regime), the buoyancy
effect is of relatively comparable magnitude to the shear effect due to the sliding lid. The velocity vector �elds show
heavy concentric narrow curves around the top wall and a widecell near the bottom wall. The isotherms spread
upward, indicating moderate temperature gradients in the vertical direction. For equivalence and large values of Ri
(Ri = 1 and 4, natural convection-dominated regime), the buoyancy effect is dominant and the velocity vector �elds
show narrow concentric curves around the top wall and a wide cell in the other part of the cavity. The isotherms spread
further upward, showing low distortion. A similar phenomenon continues for all the inclination angles at all modes.
This clearly indicates that the shear force induced by lid-movement plays a more dominant role than cavity inclination
angle.

The effects of Richardson numbers Ri and the inclination angle 
 of the cavity on the temperature pro�les at the
mid-section of an inclined cavity (X = 0.5) at Grashof number Gr = 100 and Prandtl number Pr = 0.71 are shown in
Fig. 5. For equivalence values of Ri (Ri = 1, natural convection-dominated regime), the temperatures increase linearly
asY increases. The reverse effects region for temperature pro�le, in which the temperature departs from its normal
behavior, changes as the Richardson number changes. The reverse effects region for temperature pro�les at Ri = 0.0001
appears at aroundY = 0.5, while the reverse effects region for temperature pro�les at Ri = 0.000625 appears at around
Y = 0.7. This is relevant because as the Richardson number increases, the effect of the top lid and forced convection
decreases; hence the thermal boundary layers along the sidewalls of the cavity thicken. Also, with an increase in
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FIG. 3: Isothermal lines for various Richardson numbers, Ri = 0.0001, 0.000625, 0.01, 1, and 4, respectively, and
cavity inclination angles an inclination angle of cavity
 = 0 � , 30� , and 60� at Grashof number Gr = 100 and Prandtl
number Pr = 0.71
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FIG. 4: Velocity vector �elds for various Richardson numbers, Ri = 0.0001, 0.000625, 0.01, 1, and 4, respectively,
and cavity inclination angles an inclination angle of cavity 
 = 0 � , 30� , and 60� at Grashof number Gr = 100 and
Prandtl number Pr = 0.71
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FIG. 5: Temperature pro�les at the mid-section of an inclined cavity (X = 0.5) under the effects of Richardson
numbers, Ri = 0.0001, 0.000625, 0.01, and 1, with cavity inclination angles an inclination angle of cavity
 = 0 � ,
30� , and 60� at Grashof number Gr = 100 and Prandtl number Pr = 0.71

Richardson number the temperature difference penetrates the core of the cavity and uniformly distributed isotherms
are formed inside the cavity. It seems that the variation of the inclination angle does not affect the temperature pro�les
signi�cantly. Figure 6 presents the average Nusselt numberunder the effect of inclination angle and time histories of
the average Nusselt number under the effects of inclinationangle. It is found that as the Richardson number increases
from 0.0001 to 4, the value of the average Nusselt number decreases strongly. Then the high viscosity reduces the
heat transfer rate. It is observed that the inclination angle has a slight effect on the average Nusselt number. As the
Richardson number increases from 0.01 to 4, the horizontal velocity pro�les at inclination angle 0� decrease and its
behavior changes when the inclination angle increases to 60� , as observed in Fig. 7. Moreover, the vertical velocity
pro�les increase as the Richardson number decreases from 4 to 0.0001 at a constant value of Gr = 100, as seen in Fig. 8.

Figures 9 and 10 show isotherms and velocity vector �elds at different Richardson numbers and phase devia-
tions, respectively, for Gr = 100 and Prandtl number Pr = 0.71. For very small values of Ri (Ri = 0.0001, forced

FIG. 6: The average Nusselt number under the effect of(a) Richardson number with inclination angle and(b) time
histories and inclination angle
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FIG. 7: Horizontal velocity pro�les at the mid-section of an inclined cavity (X = 0.5) under the effects of Richardson
number Ri = 0.01, 1.0, and 4 with two values of an inclination angle,
 = 0 � and 60�

convection-dominated regime), for all phase deviations considered, the core region of the cavity is isotherms while a
steep temperature gradient occurs within a thin region nearthe side walls. As the Richardson number increases, the
effect of the top lid and forced convection decreases; hencethe thermal boundary layers along the sidewalls of the cav-
ity thicken. Also, with the increase in Richardson number the temperature difference penetrates the core of the cavity
and uniformly distributed isotherms are formed inside the cavity. Here, the variation of the phase deviation clearly
affects the in isothermal lines. The velocity vector behavior in a two-dimensional lid-driven cavity is characterized
by the cell near the bottom wall and concentric curves aroundthe top wall due to the lid velocity. The behavior of
the velocity vector under the effects of Richardson number has been disused in detail previously. Due to the constant
value of Grashof number (Gr = 100) the �uid �ow is dominated bythe moving top lid; the variation of the phase
deviation does not affect the �ow pattern signi�cantly.

Figure 11 shows time histories for temperature distributions from unsteady state to steady state at Richardson
numbers Ri = 1, phase deviation� = � =2, Grashof number Gr = 100, and Prandtl number Pr = 0.71. The current

FIG. 8: Vertical velocity pro�les under the effects of Richardson number Ri = 0.0001, 0.000625, 0.01, 1.0, and 4
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FIG. 9: Isothermal lines for various Richardson numbers, Ri = 0.0001, 0.01, 1, and 4, respectively, and phase devia-
tions� = 0 ; � =2, and� at Grashof number Gr = 100 and Prandtl number Pr = 0.71
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FIG. 10: Velocity vector �elds for various Richardson numbers, Ri = 0.0001, 0.01, and 1, respectively, and phase
deviations,� = 0 ; � =2, and� at Grashof number Gr = 100 and Prandtl number Pr = 0.71

snapshots show the heat conduction from heating sinusoidalside walls and particle motion inside the lid-driven cavity.
As expected, as the simulation starts a little mixed convection is obtained and the �uid motion and the temperature
distributions are limited to the region beside the heated wall and top lid-driven wall. As the time increases, the mixed
convection increases and the snapshots of �uid motion and temperature start to occupy the �ow domain. The effects
of phase deviations with two values of Richardson number Ri =0.01, 1.0 on the temperature and horizontal velocity
pro�les at the mid-section of an inclined cavity (X = 0.5) have been introduced in Figs. 12–14. In Fig. 12, the
temperature pro�les are clearly affected under variationsof phase deviation and Richardson number. The temperature
pro�les are decreased as phase deviations increase from 0 to� . Moreover, the horizontal and vertical velocity pro�les
have a slight change as phase deviations increase from 0 to� . The vertical velocity pro�les are decrease as the
Richardson number increases from 0.01 to 1.0.
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FIG. 11: Time histories for temperature distributions from unsteady state to steady state at Richardson numbers Ri = 1,
phase deviation� = � =2, Grashof number Gr = 100, and Prandtl number Pr = 0.71

7. CONCLUSION

The problem of unsteady mixed convective �ow and heat transfer in an inclined lid-driven square cavity is formu-
lated and solved numerically by using incompressible smoothed particle hydrodynamics. In the ISPH method, the
evaluated pressure is stabilized by relaxed density invariance in solving the pressure Poisson equation. Two different

FIG. 12: Temperature at mid-section of cavity (X = 0.5) under the effects of phase deviations,� = 0 ; � =2, and� ,
with Richardson number Ri = 0.01, 1.0
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FIG. 13: Horizontal velocity pro�les at mid-section of cavity (X = 0.5) under the effects of phase deviations,� = 0 ,
� =2, and� , with Richardson number Ri = 0.01, 1.0

FIG. 14: Vertical velocity pro�les at mid-section of cavity (X = 0.5) under the effects of phase deviations,� = 0 ; � =2,
and� , with Richardson number Ri = 0.01, 1.0

cases of temperature condition in an inclined lid-driven square cavity were simulated and discussed under parametric
conditions with graphical results. As it is expected, the heat transfer mechanisms and the �ow characteristics inside
the cavity are strongly dependent on the Richardson number.The shear force induced by lid-movement plays a more
dominant role than cavity inclination angle. Due to the constant value of Grashof number, Gr = 100, the �uid �ow is
dominated by the moving top lid and the variation of the phasedeviation does not affect the �ow pattern signi�cantly.
The ISPH tool shows robust performance in simulating the mixed convection in different boundary cases for a square
cavity and it can be easily applied to complicated and free surface problems. The ISPH solution is validated by direct
comparisons with previously published work and the resultsshow good agreements with the references.
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