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ABSTRACT: This research explores the impact of entropy generation on stagnation point flow 

of a non-Newtonian Williamson nanofluid over a moving plate with activation energy and binary 

chemical reaction. For energy activation a modified Arrhenius function is invoked. Suitable 

transformation variables are used to simplify the governing flow problem to obtain the self 

similar solutions. Numerical solutions for temperature distribution, velocity of fluid, 

concentration of nanoparticle and entropy profile are established and examined using shooting 

method. Results reveal that the velocity profile reduces due to increasing Williamson parameter, 

whereas the temperature distribution and concentration of nanoparticle enhance with larger 
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values of Williamson parameter. It is also inspected that the concentration boundary layer 

increases due to activation energy and decreases due to reaction rate and temperature differences. 

Moreover, the entropy generation profile is higher for non-Newtonian fluid compared to 

Newtonian fluid. The results obtained from the present methodology validates when compared 

with articles in the existing literature. It gives an excellent agreement with the predecessors. The 

expression for Nusselt and Sherwood numbers are also taken into consideration and presented 

via graphs and tables.  

KEY WORDS: Williamson nanofluid, entropy generation, binary chemical reaction and 

activation energy, moving plate 

NOMENCLATURE  

1A First Rivilin-Erickson tensor 

Br Brinkman number 

c positive constant 

fC skin friction coefficient 

C concentration of nanoparticle  

wC concentration of nanoparticle at the surface 

C∞ ambient concentration of nanoparticle 

BD coefficient of Brownian diffusion [m-2s-1] 

TD coefficient of thermophoresis diffusion [m-2s-1] 

aE activation energy  

E dimensionless activation energy 

f dimensionless stream function 



k thermal conductivity  [Wm-1 K] 

2
rk chemical reaction rate constant 

*k  mean absorption coefficient  

L characteristic length  

wm mass flux  

I Identity vector 

n fitted rate constant 

Ω dimensionless temperature difference 

ς  dimensionless concentration difference 

Nb Brownian motion parameter  

GN entropy generation  

Nt thermophoresis parameter 

xNu Nusselt number 

Pr Prandtl number 

wq heat flux [Wm-2] 

Rex local Reynolds number on the length 

ReL  Reynolds number 

Sc Schmidt number 

xSh Sherwood number 

'''
genS rate of actual entropy generation 

'''
0S rate of characteristic entropy generation 

T temperature [K] 



T∞ free stream temperature [K] 

wT fluid temperature at wall [K] 

eu free stream velocity [ms-1] 

,u v    velocity components [ms-1] 

,x y Cartesian coordinates [m] 

Χ time constant 

Greek symbols 

α thermal diffusivity [m2 s-1] 

β  dimensionless reaction rate 

δ  temperature difference parameter 

γ   Williamson fluid parameter 

κ  Boltzmann constant 

λ  diffusive constant parameter 

0µ ,µ∞ limiting viscosities at zero and infinite shear stresses 

π  Second invariant strain tensor 

φ  dimensionless concentration of nanoparticle 

θ  dimensionless temperature  

ν kinematic viscosity [m2s-1]  

ρ density [kgm-3] 

( ) f
cρ heat capacity of the fluid [Jm-3K-1] 

( ) p
cρ effective heat capacity of the nanoparticle material [Jm-3K-1] 

Λ nanoparticle to base fluid heat capacity ratio 



Φ extra stress tensor  

wτ shear stress at plate [Nm-2] 

ψ  stream function [m2 s-1] 

η   similarity variable 

Subscripts 

w  condition at wall 

∞  condition at free stream 

Superscripts 

' derivative w.r.t. η  

1. INTRODUCTION

In the modern world of brisk technology, one of the important requirements of industries is the 

cooling of the electronic devices. It is also observed in recent years that enhancement of heat 

transfer in mechanical and thermal systems are encountered. The classical heat transfer fluids 

like oil, ethylene, glycols and water have minimum thermal conductivity. For this purpose, an 

ingenious technique has been introduced to improve the heat transfer of thermal systems by 

suspending homogeneous mixture of ultrafine nanometer-sized (1-100 nm) particle in fluid 

which enhances the conventional heat transfer. These fluids are known as nanofluid. The latest 

progresses of their mathematical modeling and heat transfer nanofluids (Buongiorno, 2006) play 

a vital role in different industries. These types of fluids have various applications like hybrid 

power engines, heat exchanger, cooling of electronics, nuclear systems cooling, manufacturing, 

biomedicine, cooling and lubrication of machine parts etc. (Wong et al. 2009; Saidur et al. 2011). 

The aspect of enhancement the thermal conductivity by scattering nanoparticles in the fluid was 

scrutinized by Masuda et al. (1993). Khan and Pop (2005) obtained the numerical solution of 



nanofluid past a stretching sheet using Buongiorno's model and analyzed the Brownian motion 

and thermophoresis effects on heat transfer rate at the surface. Further, this problem was 

extended by Rana and Bhargava (2012) by considering nonlinear stretching sheet. Abbas et al. 

(2016) obtained the multiple solutions of non-linear radiative flow of a nanofluid past a 

contracting cylinder with thermophoretic diffusion and generalized slip condition. Recently, 

Anwar et al. (2016) explored the MHD flow of nanofluid near a stagnation point towards a 

nonlinear convectively heated stretching sheet with radiation effect and obtained the numerical 

solution using Keller-box method.  

Recent studies of non-Newtonian fluid flow have presented a significant attention which 

is formed by moving plate. Because of bountiful modern and contemporary applications of non-

Newtonian fluids like geographical streams, petroleum production, blood polymers, ink-jet 

printing, drilling muds, polymer handling, foods, etc. as a result lot of considerations has been 

paid them. There are collections of non-Newtonian fluids models are suggested by several 

researchers. Among several models, there is one of the important non-Newtonian model is 

Williamson fluid model. The Williamson fluid model has a definite advantage over other non-

Newtonian fluid models in the sense that it contains both minimum viscosity µ∞  and maximum 

viscosity 0µ  which gives better results for pseudoplastic fluids (apparent viscosity at infinity 

does not tend to zero). In 1927, Williamson (1929) proposed this model which describe the 

equations of viscous flow of the pseudo-plastic fluids and verified the results experimentally. 

Nadeem et al. (2013) developed the two dimensional flow equations of Williamson fluid past a 

stretching surface and obtained the series solution using homotopy analysis method. Khan and 

Khan (2014) obtained the series solution of four types of steady flow of Williamson fluid. 

Nadeem and Hussain (2014) studied the heat transfer flow of a Williamson fluid past a stretching 



sheet moving exponentially. Kothandapani and Prakash (2015) explored the impacts of magnetic 

field and thermal radiation on the peristaltic transport of a non-Newtonian Williamson fluid in a 

tapered asymmetric channel containing nanoparticles. Malik and Salahuddin (2015) scrutinized 

the MHD flow of a Williamson fluid near a stagnation-point past a stretching cylinder and 

obtained the numerical solution. The influence of MHD on unsteady boundary layer flow of non-

Newtonian Williamson fluid holding nanoparticles in a vertical channel immersed in porous 

medium in the presence of oscillating wall temperature was investigated by Immaculate et al. 

(2016). Recently, Krishnamurthy et al. (2016) scrutinized the influence of chemical reaction and 

MHD on flow with melting heat transfer of non-Newtonian Williamson fluid in porous medium 

containing nanoparticles. 

Various systems dealing heat transfer with the mechanism of irreversibility which 

illustrates the entropy generation is correspond to mass transfer, viscous dissipation, heat transfer 

and magnetic field. Different researchers/scientist applied the second law of thermodynamics 

(Bejan, 1980; 1996). To optimize such kind of irreversibility for instance, Tasnim et al. (2002) 

examined the simultaneous the hydromagnetic effects and entropy generation through a vertical 

porous channel. Mahmud and Fraser (2004) considered the MHD free convection flow with 

entropy generation through a porous cavity. They determined that increment in a magnetic field 

leads to increase the entropy generation. Komurgoz et al. (2012) explored the entropy generation 

with the magnetic field towards the inclined porous planar channel. It was observed that 

maximum entropy generation can be obtained in absence of magnetic field and porosity. Butt 

and Ali (2013) studied the effects of entropy and thermal radiation in hydromagnetic free 

convection flow in vertical plated through a porous medium. Further investigation of entropy 

generation under the influence of MHD and slip flow on a rotating disk in a porous medium have 



variables properties was given by Rashidi et al. (2014). Recently, numerical study was conducted 

by Qing et al. (2016) on entropy generation. They discussed the Casson fluid flow over a 

stretching/shrinking porous sheet. 

The process of mass transfer with binary chemical reaction and Arrhenius activation 

energy has been given a lot of attention due to its various applications in chemical engineering, 

cooling of nuclear reacting, geothermal reservoirs and recovery of thermal oil. Generally, the 

relations between chemical reactions and mass transport are very complex, and can be 

scrutinized in the utilization of reactant species and production at several rates within the mass 

transfer and fluid. Bestman (1990) was first who considered the combined effects of binary 

chemical reaction and Arrhenius activation energy on free convection flow with mass transfer in 

a vertical pipe immersed in a porous medium. He obtained the analytic solution using 

perturbation method. Srinivas and Muthuraj (2011) studied the combined effects of MHD and 

chemical reaction on mixed convective peristaltic flow with heat and mass transfer over a 

vertical permeable space. Maleque (2013a) studied MHD free convection flow and heat with 

mass transfer over a porous vertical plate with binary chemical reaction and Arrhenius activation 

energy with heat generation\absorption and viscous dissipation. Maleque (2013b) studied the 

MHD free convection flow over a permeable unsteady flat plate with exothermic/endothermic 

chemical reactions, Arrhenius activation energy and thermal radiation. The unsteady flow with 

heat and mass transfer past a stretching sheet with binary chemical reaction with Arrhenius 

activation energy in a rotating fluid was scrutinized by Awad et al. (2014). Muthuraj et al. (2016) 

investigated elasticity of flexible wall with heat and mass transfer on peristaltic transport of a 

dusty fluid with chemical reaction. Recently, Shafique et al. (2016) studied the steady flow of a 



non-Newtonian Maxwell fluid past an elastic surface in a rotating frame in the presence of binary 

chemical reaction along with activation energy.  

In view of such facts, the prime interest of the current communication is to examine 

entropy generation on stagnation point flow of a Williamson nanofluid through a moving plate 

with activation energy and binary chemical reaction. In this study, Williamson fluid has been 

taken as a base fluid. The present flow problem is simplified with an appropriate use of 

transformation and solved by shooting method. The impacts of all physical parameters of interest 

are discussed numerically and graphically. To the author's best of knowledge, no one yet 

considered this type of problem. 

2. PROBLEM FORMULATION

Consider a steady two-dimensional incompressible flow of a Williamson nanofluid past a 

moving plate with activation energy and binary chemical reaction. The x-axis is taking along the 

plate in the direction of motion and y-axis normal to it as shown in Fig. 1. The external free 

stream velocity of the plate is taken as ( )eu x cx=  where c  is a positive constant. Moreover, wT  

and wC  are the convective temperature and concentration of nanoparticle at the plate, while T∞  

and C∞  are ambient temperature and ambient concentration of nanoparticle, respectively. The 

Cauchy stress tensor of Williamson fluid is given by (Nadeem et al. 2013; Nadeem and Hussain, 

2014). 

pIΓ = − +Φ , (1) 

and 
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Aµ µµ
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∞
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, (2) 



where Φ  is the extra stress tensor, 0µ  and µ∞  are the limiting viscosities at zero and infinite 

shear stresses, respectively, 0Χ >  is a time constant, 1A  is the first Rivilin-Erickson tensor and

α  is defined as 

1
2

α π=  , ( )2
1trace Aπ =  . (3) 

Following Gorla and Gireesha (2016), we only consider the case for which 

0µ∞ = , 1.αΧ <  

Thus, we get 

0
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Aµ
α
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−Χ
 


 (4) 

or using binomial expansion 

( )0 11 Aµ αΦ = + Χ      (5) 

Under these assumptions, the basic equations that describe the physical situation along with the 

boundary layer approximations are given by 
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The corresponding boundary conditions are 



0,  0,  ,  at  0,
( ),  ,   as .

w w

e

u v T T C C y
u u x T T C C y∞ ∞

= = = = =
→ → → →∞

(10) 

where u  and v  are the velocity components in the x −  and y −directions, respectively, ρ  is the 

density, ν  is the kinematic viscosity, ( )/
f

k cα ρ=  is the thermal diffusivity, k  is the fluid

thermal conductivity, ( ) f
cρ  is the heat capacitance of base fluid, T  is the temperature, C  is the

concentration of nanoparticle, BD  and TD  are the coefficients of Brownian and thermophoresis 

diffusion, respectively, ( ) ( )/
p f

c cρ ρΛ =  is the ratio between the effective heat capacity of the 

nanoparticle material and specific heat capacitance of the fluid, ( )2 /
Ean T

rk T T e k
−

∞  and κ  are the 

modified Arrhenius function and the Boltzmann constant, respectively, where 2
rk  is the chemical 

reaction rate constant and n  is the fitted rate constant lies between 1 1n− < < . 

We introduce the following dimensionless variables: 

,  ( ), ( ) ,  ( ) .
w w

T T C Ccy cvxf
v T T C C

η y η θ η f η∞ ∞

∞ ∞

− −
= = = =

− −
 (11) 

Here η  is the similarity variable, ψ  is the stream function. 

In view of relation (11), Equations (7)-(10) are transformed into the following self-similar 

ordinary differential equations 

2''' '' ' '' ''' 1 0f ff f f fγ+ − + + = ,       (12) 

( )2'' Pr ' Pr ' ' Pr ' 0f Nb Ntθ θ θ f θ+ + + = ,      (13) 

( )'' ' '' 1 exp 0
1

nNt EScf Sc
Nb

ff  θ b δθ f
δθ

 + + − + − = + 
, (14) 

subject to the boundary conditions 



(0) 0, '(0) 0, (0) 1, (0) 1,
'( ) 1, ( ) 0,  ( ) 0.

f f
f

θ f
θ f

= = = =
∞ → ∞ → ∞ →

(15) 

where prime denote differentiation with respect to η , 2 /ec uγ ν= Χ  is the Williamson 

parameter, ( ) /B wNb D C Cτ ν∞= −  is the Brownian motion parameter, ( ) /T wNt D T T Tt ν∞ ∞= −  is 

the thermophoresis parameter, Pr /ν α=  is the Prandtl number, /aE E Tκ ∞=  is the 

dimensionless activation energy, 2 /rk cβ =  is the non-dimensional reaction rate, 

( ) /wT T Tδ ∞ ∞= −  is the temperature difference parameter and / BSc Dν=  is the Schmidt number. 

The important physical quantities of interest are the skin friction coefficient, the Nusselt number 

and the Sherwood Number are written as 

2
,    ,  ,

( ) ( )
w w w

fx x x
e w w B w

xq xmC Nu Sh
u T T D C C
τ
ρ α ∞

= = =
− −

 (16) 

where wτ  is the shear stress, wq  is the heat flux and wm  is the mass flux given as 

2

0

0 00
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y yy
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 (17) 

Using (11), we get 

1/ 2 2 1/ 2 1/ 2Re ''(0) '' (0),   Re '(0),  Re '(0).
2f x x x x xC f f Nu Shγ θ f− −= + = − = −   (18) 

where Re /x exu ν=  is the Reynolds number. 

3. ENTROPY GENERATION ANALYSIS

Entropy equation of viscous fluid is written as (Bhatti and Rashidi 2016; Bhatti et al., 2016) 

2 2 3 2

'''
2 2gen

k T u u RD C RD T CS
T y T y y C y T y y

µ

∞ ∞ ∞ ∞
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= + + + +           ∂ ∂ ∂ ∂ ∂ ∂            

 (19) 



Volumetric entropy generation have three factors, (i) Heat Transfer Irreversibility (HTI) and (ii) 

Fluid friction Irreversibility (FFI) (iii) Diffusive Irreversibility. It is characterized as  

( )2

'''
0 2 2

k T
S

L T∞

∆
= (20) 

With the help of Equation (11), the entropy generation in dimensionless form can be written as: 

2'''
2 3 2 2

'''
0

Re '' '' Re ' Re ' Re ' '
2

gen r
G

S BN f f
S

g ς ςθ λ f λ θ f     = = + + + +     Ω Ω Ω     
 (21) 

where /T T∞Ω = ∆  is the dimensionless temperature difference, 2 /eBr u k Tµ= ∆  the Brinkman 

number, 2Re /L cL v=  is the Reynolds number based on the characteristic length, /C Cς ∞= ∆  is 

the dimensionless concentration difference and /RDC kλ ∞=  is the diffusive constant parameter. 

4. SOLUTION PROCEDURE

In current study, a useful numerical technique namely shooting method has been employed to 

scrutinize the flow problem described by the transformed equations (12)-(15). The summary of 

shooting method widely used by many researchers (Bhattacharyya et al., 2011; Zaib et al., 2016) 

is given below:  

First convert the equations (12)-(15) into IVP (initial value problem). Then select a suited finite 

value of η →∞ , say η∞ . We have the set of following first order system 

( ) ( )2

' ,  
' ,  
' 1 / 1 ,

f p
p q
q p fq qγ

=


= 
= − − + 

 (22) 

2
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' Pr Pr  Pr  ,

z
z fz Nb zh Nt z
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
= − − − 

 (23) 



( )

' ,  

' ' 1 exp ,
1

n

h
Nt Eh Scfh z Sc
Nb

f

b δθ f
δθ

= 


−  = − − + +   +  

 (24) 

under the boundary conditions 

(0) 0,  (0) 0,  (0) 1,  (0) 1.f p θ f= = = =       (25) 

To solve the system of equations as an IVP we require the values for (0)q  i.e. ''(0)f , (0)z  i.e. 

'(0)θ  and (0)h  i.e. '(0)φ  but there is no such values are given. The values of initial value for 

''(0)f , '(0)θ  and '(0)φ  are selected and the Runge–Kutta fourth order method is implemented 

to get a solution. Then the calculated values of '( )f η , ( )θ η  and ( )φ η  at η∞ (=8) are compared 

under the known boundary conditions '( ) 1f η∞ = , ( ) 0θ η∞ =  and ( ) 0φ η∞ = . The step size is 

taken as 0.01η∆ = . The technique is repeated until we obtain results correct up to the desired 

accuracy of the 10−5 level, which fulfills the convergence criterion.  

5. ANALYSIS

Tables 1 and 2 are arranged for comparison of the present results with the previous published 

results in the limiting case. It is observed that the present results are matched closely, which 

assured the validity of the current methodology. Table 3 presents the values of the Nusselt 

number as well as the Sherwood number for different values of γ  versus Nb . The Nusselt 

number is rapidly decreases with increasing Nb  while promptly increasing behavior is seen for 

Sherwood number. Figs. 2-4 are prepared to show the impact of Williamson parameter γ  on the 

velocity profile, temperature distribution and concentration of nanoparticle. The velocity profile 

shows a decreasing behavior with increasing values of γ  and develops the thicker velocity 

boundary layer as sketched in Fig. 2. Moreover, the thickness of velocity boundary layer is 

smaller for Newtonian nanofluid ( )0γ =  compared to non-Newtonian nanofluid ( )0γ ≠ . Figs. 3 



and 4 envisage that the temperature distribution and concentration of nanoparticle as well as 

thermal and concentration boundary layers thicknesses increase as increase in the value of γ .  

The impact of thermophoresis parameter Nt  on the temperature distribution and 

concentration profile are presented in Figs. 5 and 6, respectively. Figs. 5 and 6 reveal that the 

temperature distribution and concentration of nanoparticle enhance due to increasing values of 

Nt . This is because diffusion penetrates deeper into the fluid due to increasing values of Nt  

which causes the thickening of the thermal boundary layer as well as the concentration boundary 

layer. Since increase in Nt  corresponds to the increase in thermophoretic diffusion coefficient 

which ultimately enhancing the concentration of nanoparticle. It is interesting to note that the 

effect of thermophoresis parameter is more pronounced on the concentration of nanoparticle 

compared to temperature distribution.  

Figs. 7 and 8 are prepared to see the Brownian motion effect Nb  on the temperature 

distribution and concentration of nanoparticle, respectively. Fig. 7 elucidates that the temperature 

distribution and thermal boundary layer thickness increase with increasing Nb . Physical reason 

is that the kinetic energy of the nanoparticles increases due to the strength of this chaotic motion 

and as a result, the fluid's temperature increases. Whereas, the opposite trend is seen on the 

concentration profile as depicted in Fig. 8. It can be seen that the concentration of nanoparticle 

gradually decreases due to increasing values of Nb . It can be concluded that the Brownian 

motion parameter makes the fluid warm within the boundary and at that time aggravates 

deposition particles away from the regime of fluid to the surface that causing in a decrease in 

concentration profile as well as the thickness of boundary layer. The larger values of Brownian 

motion imply the strong behavior for the smaller particle, whereas for stronger particle the 

smaller values of Nb  applied. 



Fig. 9 preserves the influence of temperature difference δ  on the concentration of 

nanoparticle. This result showed that the concentration of nanoparticle and concentration 

boundary layer thickness compress due to increasing values of δ . Fig. 10 envisages that due to 

increasing values of dimensionless reaction rate β , the concentration of nanoparticle shrinkage 

and leads to thinning the concentration boundary layer thickness. Physically, an increase in the 

value of β  leads an increase in the term ( ) ( )1 exp /1n Eβ δθ δθ+ − + . This ultimately helps the 

destructive chemical reaction that increases the concentration. The contraction in φ  is followed 

with a higher gradient of concentration at the plate. Fig. 11 elucidates that the concentration of 

nanoparticle and concentration boundary layer thickness are increasing function of non-

dimensional activation energy E . This ultimately advances the generative chemical reaction due 

to which nanoparticle concentration enhances. Physically, higher activation energy and lower 

temperature leads to lesser reaction rate which slowdown the chemical reaction and thus 

concentration of nanoparticle enhances. Moreover, it is noticed from these figures that the profile 

of concentration of nanoparticles is higher in presence of activation energy ( )0E ≠  compared to 

absence of activation energy ( )0E = , while the opposite trend is observed in cases of 

temperature difference and reaction rate. 

Figs. 12-14 elaborate the variation of entropy generation against Williamson parameter γ

, Reynolds number ReL  and Brinkman number Br . Fig. 12 envisages that the entropy profile 

initially shows a decreasing behavior with increasing γ  and then starting to increase after a 

certain value of η . As expected, the entropy generation profile is higher for non-Newtonian fluid 

compared to Newtonian fluid. We observed from Figs. 13 and 14 that entropy profile accelerates 

by increasing either Brinkman number or Reynolds number. Since the entropy generation 



generated from mechanisms of all irreversibilities and as a result the entropy generation 

increases with increasing ReL . Larger values in entropy generation created by the irreversibility 

of fluid friction occur due to increasing Br .  

Figs. 15 and 16 are set to scrutinize the effect of γ  versus Nb  on the Nusselt number and 

the Sherwood number. These figures show the decreasing behavior with increasing values of γ . 

It is also observed from Fig. 15 that the values of Nusselt number decreases rapidly as the values 

of Nb  increases. Whereas, the values of Sherwood number increases quiet significantly with 

increasing Nb as illustrated in Fig. 16. Moreover, it is worth mentioning that the values of the 

Nusselt number and the Sherwood number are positive. Physically, positive values of the Nusselt 

number means that heat is moved from hot place to the cold fluid. Finally, the sketched of 

streamlines using stream function ψ  are illustrated in Figs. 17. This figure signifies that 

streamlines are moderately simple, symmetric and fuller towards an axis. 

6. CONCLUDING REMARKS

In the present perusal, optimization of entropy generation with activation energy and binary 

chemical reaction on stagnation point flow of a non-Newtonian Williamson fluid over a moving 

plate has been investigated. Suitable transformations have been applied to model the governing 

flow problem. The numerical results of the governing flow problem are obtained by using 

shooting method. The expression of entropy generation was obtained as a function of 

temperature distribution, velocity and concentration gradient. The important outcomes for the 

current analysis are: 

• The velocity of fluid decreases due to higher values of γ  and temperature distribution

and concentration of nanoparticle increase with γ .



• Temperature distribution and concentration of nanoparticle increase as the

thermophoresis parameter increases.

• Due to increasing values of Brownian motion parameter leads to increase the temperature

of fluid and decreases the concentration of nanoparticle.

• Entropy profile is increased due to the greater impact of Williamson parameter, Reynolds

number and Brinkman number.

• The values of Nusselt number and Sherwood number are decrease when γ  increases.

• Streamlines are fuller and moderately simple, symmetric towards an axis.
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Yacob et al. (2011) Hamad et al. (2012) Present 

1.2326 1.232588 1.2326 
TABLE 2: Comparison of the value of '(0)θ−  when 0,  Pr 6.2Nb Ntγ = = = =  

Kuo (2005) Khan and Pop (2013) Present 

1.1147 1.1279 1.1280 
TABLE 3: Values of the Nusselt number and the Sherwood number versus Nb  for different 

values of γ  when 0.1,  Pr 1, 1,Nt Sc= = =  4,  3,  0.5,  0.5E nβ δ= = = =  are fixed 

γ  Nb
1/ 2Rex xNu − 1/ 2Rex xSh −

0 

0 

0.2 0.4936 0.6233 

0.4 0.4418 0.6706 

0.6 0.3941 0.6870 

1 

0.2 0.4713 0.6089 

0.4 0.4217 0.6527 

0.6 0.3760 0.6679 

2 

0.2 0.4581 0.6004 

0.4 0.4098 0.6422 

0.6 0.3653 0.6568 

3 

0.2 0.4486 0.5943 

0.4 0.4011 0.6346 

0.6 0.3575 0.6488 
FIG. 1: Physical diagram of the problem 



FIG. 2: Velocity profile for different values of γ  

FIG. 3: Temperature profile for different values of γ  when 0.5,  Pr 1Nb Nt= = =  

FIG. 4: Concentration of nanoparticle for different values of γ  when 0.5,Nb Nt= =

1,  8,  10,  0.5,  0.5 Sc E nβ δ= = = = =  

FIG. 5: Temperature profile for different values of Nt  when 0.2,  1.5,  Pr 1Nbγ = = = . 

FIG. 6: Concentration of nanoparticle for different values of Nt  when 0.2,  0.5,Nbγ = =

1,  3,  4,  0.5,  0.5 Sc E nβ δ= = = = =  

FIG. 7: Temperature profile for different values of Nb  when 0.2,  0.1,  Pr 1Ntγ = = =  

FIG. 8: Concentration of nanoparticle for different values of Nb  when 0.2,  0.1,Ntγ = =

1,  3,  4,  0.5,  0.5 Sc E nβ δ= = = = =  

FIG. 9: Concentration of nanoparticle for different values of δ  when 0.2,  0.1,  0.5,Nt Nbγ = = =

1,  3,  4,  0.5Sc E nβ= = = =  

FIG. 10: Concentration of nanoparticle for different values of β  when

0.2,  0.1,  0.5,Nt Nbγ = = = 1,  0.5,  4,  0.5Sc E nδ= = = =  

FIG. 11: Concentration of nanoparticle for different values of E  when

0.2,  0.1,  0.5,Nt Nbγ = = = 1,  0.5,  3,  0.5Sc nδ β= = = =  

FIG. 12: Entropy generation for different values of γ  when 0.5,  Nb Nt= =

1,  3,  4,  0.5,  0.5,  Re 1,  0.1,  0.01Sc E n Brβ δ ς λ= = = = = = = = = Ω =  

FIG. 13: Entropy generation for different values of ReL  when 0.1, 0.5,  Nt Nb= =

0.2,  1,  3,  4,  0.5,  0.5,  1,  0.1,  0.01Sc E n Brγ β δ ς λ= = = = = = = = = Ω =  



FIG. 14: Entropy generation for different values of Br  when 0.1, 0.5,  Nt Nb= =

0.2,  1,  3,  4,  0.5,  0.5,  Re 1,  0.1,  0.01LSc E nγ β δ ς λ= = = = = = = = = Ω =  

FIG. 15: Nusselt number versus Nb  for different values of γ  when 0.1,  Pr 1Nt = =  

FIG. 16: Sherwood number versus Nb  for different values of γ  when 0.2,  0.1,Ntγ = =

3,  1,  0.5,  4,  0.5Sc E nβ δ= = = = =  

FIG. 17: Streamline pattern when 1γ =  
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