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ABSTRACT

The problem of combined forced-free convection flow over an isothermal vertical sur-

face embedded in a variable porosity, porous medium with heat generation or ab-
sorption is formulated. The formulation includes the porous medium inertia and
boundary effects, variable porosity, and thermal dispersion. The developed govern-
ing equations are transformed into nonsimilarity equations that have the advantage
of producing their solution at the leading edge of the surface. These equations are
then solved numerically subject to appropriate boundary and matching conditions by
an implicit, finite-difference method. Comparisons with previously reported numeri-
cal and experimental work on the special case where no porous medium is present
are performed and found to be in excellent agreement. A parametric study of the phys-
ical parameters involved in the problem such as the particle diameter-based Reynolds
number, the Grashof number, the flow-based Reynolds number, and the heat generation
or absorption coefficient is conducted. The obtained results are illustrated graphically
to show interesting features of the solution. It is found that flow separation exists for
the case of opposing flow condition and that the presence of thermal dispersion is
essential for this type of problem.
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NOMENCLATURE
b, ¢ empirical constants used in Eq. (4) u, v xand y components of fluid velocity
C,  fluid heat capacity U, free-stream velocity
C:  local skin-friction coefficient defined by x vertical or tangential distance
Eq. (13) y normal distance
d particle diameter z assisting (Z = 1) or opposing (Z = ~1) flow
F reduced stream function constant
g acceleration due to gravity
- 3/y2
Gr  Grashof nurpber (B (?’w T )L?/v?] Greek symbols
k porous medium effective thermal conduc- . .
e tivity defined by Eq. (6) B coefficient of thermal expansion
k fi g thermal g dgc ivit ) dimensionless heat generation or absorption
¢ D ihermal conquctivity coefficient [Q_L/(pc,U.)]
ks particle thermal conductivity transformed n(())rmal go;rdinate
K porous medium permeability n . .
L characteristic plate length € lf)orous medium pprosﬁy defined by Eq. (4)
Nu_  local Nusselt number defined by Eq. (13) & ref:-stream P orqsﬂy .
. . . . Ty fluid dynamic viscosity
Q, dimensional heat generation or absorption s L
coefficient v fluid kmema.tlc viscosity (L/p)
Pr  Prandtl number (uc /k.) v strt?am fur?ctlon
p ot p fluid density
Re  flow Reynolds number (pU_ L/l 0 dimensionless temperature [(T— T )/
Re, Reynolds number based on the particle T —T ) P b
Re f;ggi:fyi%%drllﬁznber & transformed tangential coordinate
X
T fluid temperature
T,  wall temperature Superscripts
T_  free-stream temperature ! denotes partial differentiation with respect tom

INTRODUCTION

The flow and heat transfer characteristics in porous
media have received considerable attention in recent years
owing to numerous possible applications. Examples of
these applications include geothermal reservoirs, build-
ing thermal insulation, chemical catalytic reactors, packed
beds, heat exchangers, filtration, petroleum reservoirs, and
others. Most of the early studies on porous media have used
the Darcy law which is applicable to slow flow and does
not account for the effect of a solid boundary, inertia
forces, variable porosity, and thermal dispersion effects.
In most practical situations such as drying and metal pro-
cessing, these missing effects are significant. It has been
shown by many investigators such as Benenati and Bro-
silow (1962), Schertz and Bischoff (1969), Vafai (1984),
and Vafai et al. (1985) that, for an impermeable surface
embedded in a porous medium, the porosity distribution
exhibits a peak value close to the boundary and then de-

cays asymptotically beyond that value. As a result, chan-
nels of high velocity flow are created close to the bound-
ary which tends to affect the wall friction and heat transfer
characteristics significantly. This phenomenon has been
called the channeling effect and has been discussed ex-
tensively in the literature (see, e.g., Vafai et al., 1985). The
porous medium inertial effects have been proven to be im-
portant for fast flows. That is, for situations in which the
Reynolds number based on the pore diameter and local ve-
locity is greater than order of unity. In this situation, the
traditional Darcy law is inappropriate because the pres-
sure drop across the porous medium is not linear but a
quadratic relationship with the velocity. Another limitation
of the application of the Darcy law is concerned with the
presence of a boundary. In this case, the no-slip condition
at the boundary cannot be satisfied. In a pioneering work,
Vafai and Tien (1981, 1982) were the first to consider
boundary and inertial effects on flow and heat transfer in
constant and variable porosity porous media. In studies on
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spherical particles packed beds, the secondary flow effect
caused by the mixing and recirculation of local fluid par-
ticles through tortuous paths formed by the spherical solid
particles making up the porous medium is classified as
thermal dispersion (see Amiri and Vafai, 1994). Cheng and
Vortmeyer (1988) and Hunt and Tien (1988) have reported
on and discussed the physical effects of thermal disper-
sion. In addition, the effects of non-Darcian, nonuniform
porosity, and thermal dispersion on vertical plate natural
convection in porous media have been analyzed by Hong
et al. (1987).

Mixed or combined convection heat transfer processes
can be found in connection with heat exchangers, elec-
tronic devices, solar collectors, energy storage and heat
rejection systems, and many others. The combined con-
vection flow over vertical flat plates without porous media
has been considered extensively by many investigators such
as Lloyd and Sparrow (1970), Oosthuizen and Hart (1973),
Wilks (1973), and Ramachandran et al. (1985). Experi-
mental measurements of mixed convection air flow over
a vertical isothermal surface were reported by Kliegel
(1959) and later by Hishida et al. (1983) and Ramachan-
dran et al. (1985). The effects of heat generation or ab-
sorption become important for some situations such as the
ones dealing with chemical reactions and dissociating flu-
ids. References to some studies dealing with these effects
can be found in the articles by Sparrow and Cess (1961),
Vajravelu and Nayfeh (1992), Chamkha (1996, 1997), and
Vajravelu and Hadjinicolaou (1997). All of these refer-
ences considered temperature-dependent heat generation
(source) or absorption (sink).

There has also been considerable interest in investigat-
ing combined convection heat transfer from a vertical plate
embedded in uniform porous media for different flow and
thermal wall conditions by many researchers. Takhar et al.
(1990) investigated mixed convection flow over a hot ver-
tical plate in non-Darcian porous media. Hsieh et al. (1993)
reported numerical solutions for mixed convection along
a vertical flat plate embedded in a uniform porosity medium
for the cases of variable wall temperature and variable wall
heat flux. Hooper et al. (1994) considered the same prob-
lem with surface suction or injection for the case of uni-
form wall temperature. Other works dealing with combined
convection in porous media can be found in the articles
by Gill and Minkowycz (1988), Chen and Chen (1990),
Shenoy (1992), and Aldoss et al. (1995).

Motivated by all of the above referenced work and the
significant possible applications of porous media in many
industries, it is of interest in this article to consider non-
Darcian combined convection flow over a vertical imper-

meable surface embedded in a porous medium having a
variable porosity distribution in the presence of thermal
dispersion and heat generation effects.

GOVERNING EQUATIONS

Consider steady, laminar, combined convection flow
along a vertical impermeable semiinfinite surface embed-
ded in a variable porosity porous medium in the presence
of heat generation or absorption effects. The plate or sur-
face is coincident with the half plane y > 0, x > 0 and the
flow far from the plate is a uniform stream in the x-direc-
tion parallel to the plate (see Fig. 1). All physical proper-
ties of the fluid are assumed to be constant except the
density in the buoyancy term of the momentum, equation.
Both the fluid and the porous medium are assumed to be
in local thermal equilibrium. The governing equations for
this investigation are based on the balance laws of mass,
linear momentum, and energy modified to account for the
presence of the porous medium Darcian effects and non-
Darcian boundary, inertia, and thermal dispersion effects
in addition to the buoyancy and heat generation or absorp-
tion effects. The boundary-layer form of these equations

gravity +

Porous Medium

U, Too

Uco, Too
a. Assisting b. Opposing
Flow Flow

Tw> Tcn

Figure 1. Flow configuration and coordinate system.
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(taking into account the Boussinesq approximation) can
be written as

ou dv
2422 =0 1
ox * dy M
3(u25+va—u)=2pr(T—Tm)
€2\ ox dy
2 ()
pou_ M o scnu?
T 5 X0) u—pCy)u
oT . JT\_ 3 ( aT)
pp(“ax +v8y) dy \ © dy toI-T) O

where x and y are the tangential and normal distances, re-
spectively; «, v, and T are the fluid x and y components of
velocity and temperature, respectively; p, W, C, and o,
are the fluid density, dynamic viscosity, heat capacity,
and heat generation or absorption coefficient, respectively;
& B, and T_ are the acceleration due to gravity, coefficient
of thermal expansion, and the free-stream temperature, re-
spectively; €, K, C, and k_ are the porous medium poros-
ity, permeability, inertia coefficient, and effective thermal
conductivity, respectively. Z is a constant such that Z = 1
corresponds to assisting or aiding flow and Z = -1 corre-
sponds to opposing flow.

Equations (1) through (3) are supplemented by consti-
tutive equations for the variations of the porosity, perme-
ability, inertia coefficient, and thermal conductivity of the
porous medium. It has been shown by Vafai et al. (1985)
that the results obtained experimentally by Benenati and
Brosilow (1962) in their study on void fraction distribu-
tion in packed beds that give the functional dependence of
the porosity on the normal distance from the boundary can
be represented by the exponential relationship

e=¢ (1+bexp (—cy/d)) 4)

where ¢€_ is the free-stream porosity, d is the particle di-
ameter, b and ¢ are empirical constants that depend on the
ratio of the bed to particle diameter. The values for €, b,
and c were chosen to be 0.38, 1, and 2, respectively. These
values were found to give good approximation to the vari-
able porosity data given by Benenati and Brosilow (1962)
for a particle diameter d = 5 mm. These same values were
also employed by Nithiarasu et al. (1997) on their work on
natural convection heat transfer in a fluid-saturated vari-
able porosity medium inside a rectangular enclosure. The
type of decay of porosity as the normal distance increases
given by Eq. (4) is well established and has been used ex-
tensively in studies on flow in porous media with variable
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porosity. It is also established that K and C vary with
porosity as follows:

d?e3 1.75
Ky)=—2"— C(y)=———  (5ab
) 150(1 —¢€)? W 150eK(y) G20

Following Amiri and Vafai (1994), the effective thermal
conductivity of the porous medium is given by

kezkf(e+0.1PrRem—Uu—) +(1-g)k, 6)
where k; is the clear fluid thermal conductivity, k_is the
thermal conductivity of the porous medium, Pr (uC WARE
the Prandtl number, Re (=pU_d/\) is the Reynolds
number based on the particle diameter, and U__ is the free-
stream velocity. For a typical range of free stream air ve-
locity at standard conditions of 0.3 < U__ < 3 m per sec-
ond, it can be concluded that the range of applicable values
of Re,, is between 100 and 900 for a particle diameter of
5 mm. These values of Re, were used in producing the
numerical results to be reported subsequently.

The physics of the problem suggests the following
boundary conditions:

u(x, 0)=0, vix, 0) =0, T, O)=T,

)

ut, ) ->U, Txy)—>T asy—>e

where T is the constant surface or wall temperature.

The flow and heat transfer problem represented by
Egs. (1) through (7) has no similar or exact solutions. To
facilitate the solution of the problem in the whole regime
of mixed or combined convection, it is convenient to em-
ploy the following nonsimilarity transformations similar
to those used earlier by Ramachandran et al. (1985):

x . (Uw )1/2 0¥
=— =]— A U=— N
L vx > dy

v=——

Y(x, y) = (VU 02 FE ), ®

T, y) -1 =(T,-T)8(, n)

where L is a characteristic length of the plate, v(=W/p) is
the kinematic viscosity of the fluid, and v is the stream
function which identically satisfy the continuity equation.

Substituting Eqgs. (8) into the governing equations result
in the transformed equations:

FF” & __L75EF?
2¢  DaRe V150€3Da

Gr g( oF ,,8F)
zte L o=2|F L _pr T
P e\ T

FII/ +

®
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N g ( g bc

Pr \PrRe, VeRe exp (_ CXIIEQT%)

" N (10)
F a9 F
—0.1Re F" ——|0" +&06 = (F'—— 9’—)
" 2 ) s s ag ag
where a prime denotes partial differentiation with respect
tomn and

€= eo(l +b exp(— %E—R_i n))

em
R 2 3
o= e’ € ’ 5= oL ’
Re? 150(1 —e)? pCU
L;’ - (11
UL T -T
Re=—"—, Gr=——gB(w =) ,
v v2
k
r=-==¢g+0.1PrRe F
k m
£

It should be noted here that the porous medium is as-
sumed to be nonmetallic (glass fibers), such that k << k
and, therefore, the last term of Eq. (6) is neglected. The
transformed boundary conditions become

F'§0=0, FE0=0; 6¢E0=1
FEn-1; 0(E, M) —>0asm — oo

Important physical quantities for this flow and heat trans-
fer situation are the local skin-friction coefficient and the
local Nusselt number. These can be expressed, respec-
tively, in dimensionless form as follows:

CpRe!? =2F" (&, 0); NuRe 2 =-0'(€, 0) (13)

(12)

where Re, = U_x/v is the local Reynolds number.
NUMERICAL TECHNIQUE

The problem represented by Eqs. (9) through (12) is
obviously nonlinear and exhibits no closed-form solution.
Therefore, it must be solved numerically. The tridiagonal,
implicit, iterative, finite-difference method discussed by
Blottner (1970) has proven to be successful for the solution
of boundary-layer problems. For this reason, it is adopted
in the present work.

All first-order derivatives with respect to & are repre-
sented by three-point backward difference formulae. All
second-order differential equations in 1 are discretized us-
ing three-point central difference quotients while all first-
order differential equations in M are discretized using the
trapezoidal rule. The computational domain was divided

into 41 nodes in the & direction and 101 nodes in the 1| di-
rection. Constant step sizes in both the & and 1 directions
such that AE = 0.025 and An = 0.01 are employed. The gov-
erning equations are then converted into sets of linear tridi-
agonal algebraic equations that are solved by the Thomas
Algorithm (see Blottner, 1970) at each iteration. The con-
vergence criterion employed in the present problem re-
quired that the difference between the current and the pre-
vious iterations be 1075, It should be mentioned that many
numerical experimentations were performed by altering
the step sizes in both directions to ensure accuracy of the
results and to assess grid independence and it was found
that a computational domain of (&, ) = (41, 101) grid
points is adequate to produce accurate results. Many re-
sults were obtained throughout the course of this work. A
representative set is presented in Figs. 2 through 21 to show
the effects of the physical parameters on the solutions. In
all of the results to be reported subsequently, Pr was
equated to 0.7 corresponding to air.

RESULTS AND DISCUSSION

To assess the accuracy of the numerical method, a com-
parison between the numerical results obtained in this
study and the numerical and experimental solutions re-
ported earlier by Ramachandran et al. (1985) for mixed
convection assisting flow of air (Pr = 0.7) along a vertical
plate in the absence of a porous medium is performed. The
results of this comparison are reported in Fig. 2 for the tan-
gential velocity F” and the temperature 0 profiles at vari-
ous values of the modified mixed convection parameter
E* = € Gr/Re>. It should be mentioned here that £" is the
same & employed by Ramachandran et al. (1985). It is ob-
vious from this figure that excellent agreement between
the present results of both F’ and 8 and those reported by
Ramachandran et al. (1985) exists. This favorable com-
parison lends confidence to the numerical results to be
reported subsequently.

Figures 3 and 4 present typical tangential velocity (F”)
and temperature () profiles at & = 1 for various values of
the Reynolds number based on the particle diameter Re,,
with all other parameters being fixed, respectively. Unless
otherwise stated, these and all subsequent figures corre-
spond to the aiding or assisting flow condition. It is clearly
seen from these figures that both the distributions of F”
and @ increase while both the hydrodynamic and thermal
boundary-layer thicknesses decrease as Re,, increases. In
addition, as Re, becomes greater than 300, an overshoot
above the free stream value in the velocity profile occurs.
This overshoot phenomenon occurs close to the boundary
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Figure 2. Comparison of the tangential velocity and temperature profiles between present and Ramachandran et al. (1985) solutions.
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Figure 3. Effect of Re,, on the tangential velocity profiles.
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Figure 4. Effect of Re,, on the temperature profiles.
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and has been verified experimentally in the work of Ra-
machandran et al. (1985).

Figures 5 and 6 depict the influence of Re,, on both the
local skin-friction coefficient C;;(=C.Re!’?) and the local
Nusselt number Nu(=Nu_Re!’?) along the vertical plate,
respectively. Increases in the particle-diameter-based
Reynolds number Re, have the tendency to increase the
slopes of both the tangential velocity F”(€, 0) and tem-
perature profiles —0’(§, 0) at the wall. This has the direct
effect of increasing both C; and Nu_ as is evident from
Figs. 5 and 6. In addition, it is observed from Fig. 6 that
the Nusselt number curves for Re, = 500, 700, and 900 in-
tersect far from the plate’s leading edge and the point of
intersection appears to be shifting toward the leading edge
of the plate as Re , is increased further. This behavior is be-
lieved to be related to or associated with the thermal dis-
persion effect. Inspection of Eq. (10) shows that as Re,, is
increased, the second term becomes very small while the
first and third terms dominate for small &. As the flow
moves along the plate and & increases, some contributions
from the last terms multiplying £ of Eq. (10) that have the
opposite sign of the other dominating terms tend to level
off or slow down the increases in the values of Nu_Re!”
at the higher & locations. This, in turn, causes the curves at
the higher Re,, values to intersect.

Figures 7 through 10 illustrate the effects of the Grashof
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number Gr on the tangential velocity and temperature pro-
files at & = 1 and the local skin-friction and Nusselt num-
ber distributions along the plate for a fixed flow Reynolds
number Re = 10, respectively. Increasing the values of Gr
(that is, increasing the buoyancy effects) has the tendency
to increase the coupling between the flow and thermal dis-
tributions. This causes higher velocity and temperature
distributions and higher wall gradients. In addition, the
overshoot phenomenon mentioned previously becomes
more pronounced as the buoyancy effects become high
(Gr > 100). The increased wall gradients predicted in the
velocity and temperature [-6'(E, 0)] profiles as Grincreases
produce higher wall friction coefficients and Nusselt num-
bers. However, for Gr = 1000, that is Gr/Re? = 10 (high
buoyancy effects), the Nusselt number is predicted to be
lower than that of Gr = 500 around & = 0.3. These facts are
evident from Figs. 7 through 10.

The variations of F'(1, n), 8(1, ), C5(&), and Nu(€)
that are brought about by varying the flow Reynolds num-
ber Re for a fixed value of Gr = 100 are given in Figs. 11
through 14, respectively. The shown values of Re =2, 3,
5, and 10 for Gr = 100 correspond to mixed convection pa-
rameter values Gr/Re? =25,11.11,4, and 1, respectively.
That is, lower values of Re correspond to the buoyancy-
dominated regime whereas higher values of Re correspond
to the forced convection-dominated regime. Therefore, as

2.01GE=
Pr=0.7
Re=10
6=0

1.8

16 Re, =700
Re,=5

C.Re,”

1.2

1.0

0.8

Re, =900

Re_ =300

00 01 02 03 04

05 06 07 08 09 1.0

Figure 5. Effect of Re,, on the local skin-friction coefficient.
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Figure 6. Effect of Re,, on the local Nusselt number.
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Figure 7. Effect of Gr on the tangential velocity profiles.
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Figure 8. Effect of Gr on the temperature profiles.
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Figure 9. Effect of Gr on the local skin-friction coefficient.
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Figure 10. Effect of Gr on the local Nusselt number.

expected, increases in Re cause decreases in F” and C; val-
ues at every location along the plate and increases in 6 and
Nu_ values along the plate. These behaviors are shown
clearly in Figs. 11 through 14, respectively. It is also ob-
served that for Re = 10 (Gr/Re? = 1) the skin-friction co-
efficient is almost constant whereas for small values of Re
(Re = 2) the formation of peaks in the values of Nu_ close
to the leading edge of the plate is predicted. It is now ob-
vious from Figs. 10 and 14 that the distribution of the
Nusselt number Nu_ along the plate’s tangential distance
€ tends to behave differently for higher values of Gr/Re?
(free convection-dominated regime) than for lower values
(forced convection-dominated regime). In the former re-
gime, Nu_ is shown to be decreasing after a certain dis-
tance from the leading edge of the plate while in the latter
regime Nu_ keeps on increasing with &. Again, and as
discussed for Re , this phenomenon is probably due to
the presence of the variable porosity and thermal disper-
sion effects. As the mixed convection parameter Gr/Re?
increases, the thermal buoyancy-induced flow increases
and, therefore, the second term and the term before last
in Eq. (10) which have the opposite sign of the other terms
increase in magnitude, causing retardation in the wall heat
transfer. For small £ this behavior is minimal. However, it
becomes more pronounced for larger values of €. As a

result of this, the wall heat transfer increasing behavior
caused by the conductive and convective terms are over-
come by the retarding effect caused by the thermal dis-
persion effects.

All of the figures discussed in the preceding paragraphs
were obtained for a neutral fluid (8 = 0). To iltustrate the
possibility that the fluid can act as a thermal source (heat
generation) or a thermal sink (heat absorption), the heat
generation or absorption coefficient d is allowed to vary
separately. Figures 15 through 18 elucidate the features of
F'(1,m), 8(1,m), Ca(§), and Nu(E) as & is altered. Itis a
known fact that heat generation effects cause the fluid tem-
perature to increase. This has the tendency to increase the
thermal buoyancy effects, thus causing higher buoyancy-
induced flow velocities. On the other hand, heat absorp-
tion produces the opposite effect, namely decreases in the
temperature and velocity values along the plate. These
behaviors are clear from Figs. 15 and 16. In addition,
enhanced skin-friction distributions and reductions in the
wall heat flux along the plate are predicted as the values of
d increase. This is due to the increases in the wall slopes
of the tangential velocity profiles [F”(€, 0)] and the de-
creases in the negative wall slopes of the temperature pro-
files [-6/(&, 0)] as & increases. This is evident from Figs. 17
and 18. Furthermore, it is observed that the Nusselt number
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Figure 11. Effect of Re on the tangential velocity profiles.
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Figure 12. Effect of Re on the temperature profiles.
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Figure 13. Effect of Re on the local skin-friction coefficient.
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Figure 15, Effect of 8 on the tangential velocity profiles.
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Figure 16. Effect of 8 on the temperature profiles.
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Figure 17. Effect of 8 on the local skin-friction coefficient.

Figure 18. Effect of § on the local Nusselt number.
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Nu is more sensitive to changes in & than the skin-friction
coefficient C.

It should be mentioned herein that a similar study for
clear fluid flow over a cone and a wedge by Vajravelu and
Nayfeh (1992) pointed out that for 8 > 1, the flow and heat
transfer solutions become oscillatory in nature, indicating
instability problems. This behavior can be observed from
the simple Darcy model with heat generation for large val-
ues of 8. In the present problem with consideration of
variable porosity and thermal dispersion effects, it was in-
vestigated whether this condition occurs and, if so, for what
values of 8. The result of this investigation indicated that
for values of & as high as 8 = 9, a very distinctive peak in
the temperature profile (8__ = 13.13) occurring atn =5.95
was observed. The proper approach to the ambient temper-
ature condition took place at 1 = 25. This huge increase in
the fluid temperature caused a distinctive maximum in the
velocity profile that occurred very close to the plate surface
at 1 =2.27, illustrating the channeling effect usually ob-
served in variable porosity studies (see, e.g., Vafai et al.,
1985). The approach to the ambient velocity condition oc-
curred at M = 20. For values of § > 9 solution convergence
problems were encountered, which may be suggesting the
instability problems mentioned by Vajravelu and Nayfeh
(1992). No results for this situation are reported graphically
as 8 = 9 may not represent a physical situation.
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Figures 19 and 20 present comparisons of the local skin-
friction coefficients C;; and the local Nusselt number Nu
along the plate for assisting or aiding flow with those cor-
responding to opposing flow under the same conditions
for various values of Gr, respectively. For the case of op-
posing flow (Z = — 1) complete solutions in the whole
computational domain (0 < € < 1) were not possible. This
was due to the flow separation or reversal flow condition
near the wall for £ > 0.5. The location of this condition was
found to be dependent on the value of Gr or the mixed
convection parameter Gr/Re?. For this reason, Crand Nu
were plotted up to & = 0.5 in Figs. 19 and 20. It should be
mentioned herein that this type of flow reversal phenom-
enon was previously reported by Kliegel (1959) and Ra-
machandran et al. (1985). It is observed from Fig. 19 that
for vanishing or small values of Gr (Gr = 0.001) the skin-
friction coefficient Cy, is constant along the plate for both
assisting and opposing flows. However, while Cj; in-
creases linearly with & for assisting flow as Gr increases,
it tends to decrease at the same rate for opposing flow.
That is, for a specific value of Gr, the distribution of (ou
along the plate for assisting and opposing flow conditions
is symmetric about that corresponding to forced convec-
tion (Gr = 0). On the other hand, a different behavior is
predicted for the wall heat flux along the plate. That is,
the local Nusselt number is more sensitive to changes in

1.4
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1.2 ---Opposing Flows

Gr=100

& 0.8 Gr=0.001 (Assisting or Opposing Flows)
&) Serreeol L
0.6 el TR Gr=50
PT=0.7 Teee 7
OdRe=10 | Tt Gr=100
Re,=s00 s~
0.2 6=0 S~y

Figure 19. Comparison of the local skin-friction coefficient between assisting and opposing flows.
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Figure 20. Comparison of the local Nusselt number between assisting and opposing flows.

Gr for opposing flows than for aiding flows. Also, it is ob-
served from Fig. 20 that higher values of Nu_ are obtained
for aiding flows than those corresponding to opposing
flows. In addition, while Nu increases continuously with
& for assisting flow, it tends to initially increase and then
decrease gradually along the plate for opposing flow at
high Gr values.

Finally, the physical consequence of including the vari-
able porosity and thermal dispersion effects in the mathe-
matical model on the local Nusselt number Nu is shown
in Fig. 21 for the flow aiding condition. First, the local
Nusselt number along the plate in the absence of the
porous medium is compared with the numerical and ex-
perimental results of Ramachandran et al. (1985) and the
experimental data of Kliegel (1959) and found to be in
good agreement. In addition, it is predicted that the Nus-
selt number is constant along the plate if the porosity of
the medium is assumed constant and without including the
thermal dispersion effects. However, if the porosity is al-
lowed to vary exponentially as discussed earlier, and main-
taining the absence of the thermal dispersion effects from
the model, a different behavior is predicted in which Nu
increases with the distance along the plate. Furthermore,
when the thermal dispersion effects were included in the
model with the porosity kept constant, much higher values
of Nu;‘ (almost one order of magnitude higher) than those

corresponding to the case without thermal dispersion were
predicted for the parametric conditions shown on the fig-
ure. For this situation, the Nusselt number is also constant
along the plate except in the immediate vicinity of the
wall (§ < 0.1). Moreover, when all of the effects (variable
porosity and thermal dispersion) were included in the
model, the same increasing trend of Nu with & as the cor-
responding case without dispersion is predicted but the
values of Nu_ are almost one order of magnitude higher
for this case. This figure highlights the importance of both
variable porosity and thermal dispersion effects on the
Nusselt number and suggests that numerical results based
on a model excluding these effects may be misleading.

CONCLUSION

This work focussed on the numerical modeling of steady,
laminar combined convection heat transfer from a vertical
impermeable semiinfinite isothermal vertical surface em-
bedded in a porous medium having a variable porosity
distribution and in the presence of fluid heat generation
effects. The porous medium was made up of spherical solid
particles and the fluid was assumed to be Newtonian. The
governing equations which included the porous medium
boundary, inertia, variable porosity, and thermal dispersion
effects were transformed into nonsimilar equations and
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Figure 21. Influence of variable porosity and thermal dispersion on the local Nusselt number.

then solved numerically by an implicit, iterative finite-
difference scheme. The accuracy of the numerical method
was validated by comparisons with previously published
numerical and experimental work on the same problem
excluding the porous medium and heat generation effects.
A comprehensive parametric study concluded that a re-
versed flow or a flow separation condition was predicted
for the case of opposing flow situation whether the porous
medium is present or not. Also, it was found that the local
Nusselt number was affected significantly by the inclu-
sion of variable porosity or thermal dispersion effects. This
study showed a comparison of the predictive capabilities
of various porous media models currently employed by
many investigators. Thermal dispersion was found to be
the most influential effect among all others. It is hoped that
the numerical results reported in this study will serve as a
vehicle for understanding the various aspects of porous
media modeling and will serve as a stimulus for experi-
mental work on this problem.
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