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Abstract

Similarity equations governing steady hydromagnetic boundary-layer ¯ow over an accelerating perme-
able surface in the presence of such e�ects as thermal radiation, thermal buoyancy, and heat generation or
absorption e�ects are obtained. These equations are solved numerically by an implicit ®nite-di�erence
method. Favorable comparisons with previously published work are obtained. The e�ects of the various
parameters on the velocity and temperature pro®les as well as the skin-friction coe�cient and wall heat
transfer are presented graphically and in tabulated form. Ó 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Boundary-layer ¯ow and heat transfer over a continuously stretched surface has received
considerable attention in recent years. This stems from various possible engineering and metal-
lurgical applications such as hot rolling, wire drawing, metal and plastic extrusion, continuous
casting, glass ®ber production, crystal growing, and paper production. The ®rst studies of
boundary-layer ¯ow over a continuous impermeable surface moving at a constant speed was
carried out by Sakiadis [1,2]. His results showed a quite di�erent behavior from the classical
Blasius problem due to entrainment of ambient ¯uid into the boundary layer. Tsou et al. [3]
reported both analytical and experimental results for the ¯ow and heat transfer aspects developed
by a continuously moving surface. Erickson et al. [4] and Fox et al. [5] extended Sakiadis' problem
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to include wall suction or blowing e�ects and investigated its e�ects on the heat and mass transfer
in the boundary layer. Many investigators have considered the problem of a stretched surface
moving with a linear velocity with the axial distance for various temperature boundary conditions
(see, for instance, [6±10]). Gupta and Gupta [11] extended the work of Erikson et al. [4] for the
case of linear velocity movement of the stretched surface. Chen and Char [12] investigated the
e�ects of both variable surface temperature and heat ¯ux on the heat transfer characteristics of a
linearly stretched surface subject to wall suction or injection.

Hydromagnetic ¯ows and heat transfer have become more important in recent years because of
many important applications. For example, in many metallurgical processes which involve
cooling of continuous strips or ®laments, these elements are drawn through a quiescent ¯uid.
During this process, these strips are sometimes stretched. The properties of the ®nal product
depend to a great extent on the rate of cooling. This rate of cooling has been proven to be
controlled and, therefore, the quality of the ®nal product by drawing such strips in an electrically
conducting ¯uid subject to a magnetic ®eld [10]. Many works have been reported on ¯ow and heat
transfer over a stretched surface in the presence of a magnetic ®eld (see, for instance, [10,13±15]).

In certain situations, such as those dealing with chemical reactions and dissociating ¯uids, heat
generation or absorption may become important. This can be accounted for by addition of a
source or sink term which represents this e�ect in the energy equation. In addition, thermal ra-
diation and buoyancy e�ects can become more pronounced in ¯ow and heat transfer over a
continuously stretched surface. Therefore, the purpose of this study is to consider thermal radi-
ation and buoyancy e�ects on hydromagnetic ¯ow over an accelerating permeable surface with
heat generation or absorption.

2. Problem formulation

Consider steady, laminar, viscous boundary-layer ¯ow over an accelerating semi-in®nite ver-
tical permeable surface. A uniform magnetic ®eld is applied in the horizontal direction that is
normal to the surface. The surface is assumed to be permeable so as to allow for possible wall ¯uid
suction or injection. A temperature-dependent heat source (or sink) is assumed to be present in the
¯ow and that thermal radiation and buoyancy e�ects are signi®cant. All ¯uid properties are as-
sumed to be constant except the density in the body force term of the balance of linear mo-
mentum. The magnetic Reynolds number is assumed to be small so that the induced magnetic
®eld is neglected. No electric ®eld is assumed to exist and both viscous and magnetic dissipations
are neglected. Under these assumptions, along with the Boussinesq approximation, the boundary-
layer equations for this problem can be written as
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where x and y are the vertical and horizontal directions, respectively. u; v; and T are the ¯uid
velocity components in the x and y directions and temperature, respectively q; m; cp; and
a �k=�qcp�� are the ¯uid density, kinematics viscosity, speci®c heat at constant pressure, and
thermal di�usivity, respectively. k; b; r;B0, and g are the ¯uid thermal conductivity, volumetric
expansion coe�cient, electric conductivity, applied magnetic induction, and the gravitational
acceleration, respectively. qr and T1 are the thermal radiation and the free stream temperature.
The terms b�u�T1 ÿ T � and Q0�T ÿ T1� (with b� and Q0 being constants) both represent the heat
generated or absorbed per unit volume. The ®rst form was used recently by Acharya et al. [16]
while the last form was used by Vajravelu and Nayfeh [17] and Chamkha [18]. The reason for
retaining both forms in the present work will be explained at a subsequent stage in this work.

By using Rosselant approximation and following Raptis [19], the radiative heat ¯ux qr is given
by

qr � ÿ 4r�

3k�
oT 4

oy
; �4�

where r� is the Stefan±Boltzmann constant and k� is the mean absorption coe�cient.
Assuming that the temperature di�erences within the ¯ow are su�ciently small so that T 4 can

be expanded in Taylor series about the free stream temperature T1 to yield

T 4 � 4T 3
1T ÿ 3T 4

1; �5�

where the higher-order terms of the expansion are neglected.
By employing Eqs. (4) and (5), Eq. (2) becomes
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The boundary conditions for this problem can be written as

u�x; 0� � ax; v�x; 0� � vw;

T �x; 0� � Tw�x� � T1 � A0x;

u�x;1� � 0; T �x;1� � T1;

�7�

where a is the stretching rate (a constant), vw is the wall suction �vw < 0� or injection �vw > 0�
velocity, and Tw�x� is the wall temperature.

Using the usual de®nition for the stream function w such that u � ow=oy; v � ÿow=ox and
substituting the following similarity transformation

w � �ma�1=2xf �g�; g � a
m

� �1=2

y; h�g� � T ÿ T1
Tw ÿ T1

�8�
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into Eqs. (1)±(3) yields

f 000 � ff 00 ÿ �f 0�2 ÿM2f 0 � Grh � 0; �9�

�NR � 1�
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are the Hartmann number, Grashof number, Prandtl number, thermal radiation parameter and
heat generation or absorption coe�cients, respectively. It is seen from Eq. (11) that using a heat
generation or absorption e�ect of the form b�u�T1 ÿ T � produces a locally similar set of equations
since dx depends on x. However, by employing the form Q0�T ÿ T1� yields self-similar equations
everywhere along the surface. Since one of the objectives of this work is to obtain similarity
equations, the second form for the heat generation or absorption e�ect is employed. Also, the ®rst
form is kept in the formulation for merely comparison purposes with [16]. It should be noted here
that positive values of D indicate heat generation while negative values of D indicate heat ab-
sorption.

The transformed boundary conditions become

f 0�0� � 1; f �0� � ÿf0; h�0� � 1;

f 0�1� � 0; h�1� � 0;
�12�

where f0 � vw=�am�1=2
is the wall mass transfer coe�cient such that f0 < 0 indicates wall suction

and f0 > 0 corresponds to wall blowing conditions.
The skin-friction coe�cient and the wall heat transfer are important physical parameters for

this ¯ow and heat transfer situation. These parameters can be de®ned as follows:

Cf � sw

l�a=m�1=2ax
� l�ou=oy��x; 0�

l�a=m�1=2ax
� f 00�0�; �13�

Q � qw

k�a=m�1=2�Tw ÿ T1�
� ÿk�oT=oy��x; 0�

k�a=m�1=2�Tw ÿ T1�
� ÿh0�0�; �14�

where sw and qw are the dimensional shear stress and heat transfer at the accelerating surface. It is
seen that Cf and Q are directly proportional to the wall velocity and temperature gradients, re-
spectively.
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In the absence of buoyancy e�ects �Gr � 0�, the ¯ow problem is uncoupled from the thermal
problem. For this situation, the ¯ow equation (9) can be solved in closed form subject to the ¯ow
boundary conditions in Eq. (12). This closed-form solution was reported previously by Chak-
rabarti and Gupta [20] and can be written as

f �g� � a1 � a2 exp�ÿa3g�; �15�

where a1; a2 and a3�> 0� are constants given by

a1 � 1

2�1�M2� �f
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o
; �16�
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: �17�

The skin-friction coe�cient for this case becomes

Cf � f 00�0� � a2a
2
3: �18�

In the limit as M ! 0 (no magnetic ®eld), the solutions for f �g� and f 00�0� become

f �g� � mÿ 1

m
exp�ÿmg�; f 00�0� � ÿm �19�

such that

f0 � ÿ m
�
ÿ 1

m

�
: �20�

In addition, for the case of impermeable wall �f0 � 0� the solutions for f �g� and f 00�0� become

f �g� � 1ÿ exp�ÿg�; f 00�0� � ÿ1; �21�

which are consistent with those of Crane [6].

3. Numerical method and validation

In the presence of buoyancy e�ects �Gr 6� 0�, the ¯ow and thermal problems are coupled and
must be solved simultaneously. An analytical solution of Eqs. (9) and (10) subject to Eq. (12)
appears to be impossible. Therefore, a numerical solution must be obtained. The type of Eqs. (9)
and (10) is suitable for solution by the fourth-order Runge±Kutta method or by the implicit ®nite-
di�erence method discussed by Blottner [21]. Since the ®nite-di�erence method is more accurate
and more ¯exible in setting the limiting condition far from the surface than the Runge±Kutta
method, it is adopted in the present work.

A.J. Chamkha / International Journal of Engineering Science 38 (2000) 1699±1712 1703



Eqs. (9) and (10) are discretized using three-point central di�erence formulae with f 0 being
replaced by another variable V. The equation f 0 � V is discretized using the trapezoidal rule. The
g direction is divided into 196 nodal points and a variable step size is used to account for the sharp
changes in the variables in the immediate vicinity of the surface where viscous e�ects dominate.
The initial step size used is Dg1 � 0:001 and the growth factor K � 1:03 such that Dgn � K Dgnÿ1

(where the subscript n is the number of nodesÿ 1). The ordinary di�erential equations are then
converted into linear algebraic di�erence equations that are solved by the Thomas algorithm
discussed by Blottner [21]. Iteration is employed to deal with the nonlinear nature of the original
governing equations. The convergence criterion employed in this work was based on the relative
di�erence between the current and the previous iterations. When this di�erence or error reached
10ÿ5, the solution was assumed converged and the iteration process was terminated.

Table 1 presents a comparison of the wall heat transfer Q � ÿh0�0� for various values of the
suction or injection parameter f0 and the heat generation or absorption parameter dx with those
reported previously by Acharya et al. [16]. It is seen from this table that excellent agreement
between the results exists. In addition, the closed-form solution reported earlier by Crane [6] (Eq.
(21)) is also compared favorably with the numerical result for Gr � 0 reported in Fig. 1. These
favorable comparisons lend con®dence in the accuracy of the numerical procedure.

Table 1

Comparison of wall temperature gradient �ÿh0�0�� with Acharya et al. [16]a

f0 � 0:45 f0 � 0:45 f0 � 0 f0 � 0 f0 � ÿ1:5 f0 � ÿ1:5
dx � 0:5 dx � 1:0 dx � 0:5 dx � 1:0 dx � 0:5 dx � 1:0

Present work 0.82397 0.96191 0.94769 1.07996 1.57077 1.66184

Acharya et al. [16] 0.82250 0.96180 0.94620 1.07890 1.56960 1.66030

a Gr � 0; M � 0; NR � 0; Pr � 0:71 and D � 0:

Fig. 1. E�ects of Gr on velocity pro®les.

1704 A.J. Chamkha / International Journal of Engineering Science 38 (2000) 1699±1712



4. Results and discussion

Figs. 1 and 2 present typical velocity and temperature pro®les in the boundary layer adjacent to
the surface for various values of the Grashof number Gr, respectively. All of the parameters for
the other e�ects are set to zero in order to study the in¯uence of a single e�ect at a time. Increases
in the values of Gr have the tendency to induce more ¯ow in the boundary layer due to the e�ect
of the thermal buoyancy. For small buoyancy e�ects �Gr � 1�, the maximum ¯ow velocity occurs
at the surface. However, as the buoyancy e�ects get relatively large, a distinctive peak in the
velocity pro®le occurs in the ¯uid adjacent to the wall and this peak becomes more distinctive as
Gr increases further. Along with this ¯ow behavior, the thermal boundary layer reduces as Gr
increases causing the ¯uid temperature to reduce at every point other than that of the wall. These
¯ow and thermal behaviors are depicted by the respective increases and decreases in the velocity
and temperature ®elds as Gr increases shown in Figs. 1 and 2.

Figs. 3 and 4 illustrate the in¯uence of the Hartmann number M on the velocity and tem-
perature pro®les in the boundary layer, respectively. Application of a transverse magnetic ®eld to
an electrically conducting ¯uid gives rise to a resistive-type force called the Lorentz force. This
force has the tendency to slow down the motion of the ¯uid in the boundary layer and to increase
its temperature. Also, the e�ects on the ¯ow and thermal ®elds become more so as the strength of
the magnetic ®eld increases. This is obvious from the decreases in the velocity pro®les and the
increases in the temperature pro®les presented in Figs. 3 and 4.

The e�ects of the thermal radiation parameter NR on the velocity and temperature pro®les in
the boundary layer are illustrated in Figs. 5 and 6, respectively. Increasing the thermal radiation
parameter NR produces signi®cant increases in the thermal condition of the ¯uid and its thermal
boundary layer. Through the buoyancy e�ect, this increase in the ¯uid temperature induces more
¯ow in the boundary layer causing the velocity of the ¯uid there to increase. In addition,

Fig. 2. E�ects of Gr on temperature pro®les.
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the hydrodynamic boundary layer thickness increases as a result of increasing NR. These behaviors
are clearly shown in Figs. 5 and 6.

Figs. 7 and 8 depict the in¯uence of the suction/injection parameter f0 on the velocity and
temperature pro®les in the boundary layer, respectively. It is known that imposition of wall ¯uid
suction reduces both the hydrodynamic and thermal boundary layers which indicates reduction in
both the ¯uid velocity and temperature pro®les. However, the exact opposite behavior is produced
by imposition of wall ¯uid blowing or injection. These behaviors are clear from Figs. 7 and 8.

Fig. 3. E�ects of M on velocity pro®les.

Fig. 4. E�ects of M on temperature pro®les.
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The in¯uence of the presence of a heat source �D > 0� or a heat sink �D < 0� in the boundary
layer on the velocity and temperature ®elds is presented in Figs. 9 and 10, respectively. The
presence of a heat source in the boundary layer generates energy which causes the temperature of
the ¯uid to increase. This increase in temperature produces an increase in the ¯ow ®eld due to the
buoyancy e�ect. On the other hand, the presence of a heat sink in the boundary layer absorbs
energy which causes the temperature of the ¯uid to decrease. This decrease in the ¯uid temper-

Fig. 5. E�ects of NR on velocity pro®les.

Fig. 6. E�ects of NR on temperature pro®les.
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ature causes a reduction in the ¯ow velocity in the boundary layer as a result of the buoyancy
e�ect which couples the ¯ow and thermal problems. These behaviors are depicted in Figs. 9 and 10.

Tables 2 and 3 illustrate the e�ects of f0;M ; and NR on both the wall velocity and temperature
gradients ÿf 00�0� and ÿh0�0�, respectively. As mentioned before increasing the value of the suc-
tion/injection parameter f0 causes both the hydrodynamic and thermal boundary layers to

Fig. 7. E�ects of f0 on velocity pro®les.

Fig. 8. E�ects of f0 on temperature pro®les.
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increase causing the wall gradients of both the velocity and temperature pro®les to decrease. This
is consistent with Figs. 7 and 8 and is depicted in the decreases of ÿf 00�0� and ÿh0�0� as f0 in-
creases shown in Tables 2 and 3. Similarly, Figs. 5 and 6 show that as the thermal radiation
parameter NR increases, the wall gradients of both the velocity and temperature pro®les decrease.
However, while the wall velocity gradient ÿf 00�0� increases as the Hartmann Number M increases,
the wall heat transfer ÿh0�0� decreases as predicted in Tables 2 and 3.

Fig. 9. E�ects of D on velocity pro®les.

Fig. 10. E�ects of D on temperature pro®les.

A.J. Chamkha / International Journal of Engineering Science 38 (2000) 1699±1712 1709



Tables 4 and 5 depict the e�ects of the buoyancy parameter or Grashof number Gr and the heat
generation or absorption parameter D on ÿf 00�0� and ÿh0�0�, respectively, it is seen earlier from
Fig. 1 that for Gr � 5 a distinctive peak in the velocity pro®le exists. This causes its wall slope to
become positive which means ÿf 00�0� is negative. This explains the decrease in ÿf 00�0� as Gr in-
creases. On the other hand, Fig. 2 shows that ÿh0�0� increases as Gr increases. This is consistent
with Table 5. Increasing the value of the heat generation or absorption parameter D is predicted to

Table 4

Wall velocity gradient �ÿf 00�0�� for various Gr and D valuesa

Gr D � ÿ1:0 D � 0 D � 0:5

0 1.00241 1.00241 1.00241

5 ÿ0.80542 ÿ0.99399 ÿ1.12152

a f0 � 0; M � 0; NR � 0; Pr � 0:71 and dx � 0:

Table 5

Wall temperature gradient �ÿh0�0�� for various Gr and D valuesa

Gr D � ÿ1:0 D � 0 D � 0:5

0 1.21338 0.80405 0.57944

5 1.34695 1.06986 0.90408

a f0 � 0; M � 0; NR � 0; Pr � 0:71 and dx � 0:

Table 3

Wall temperature gradient �ÿh0�0�� for various f0; M and NR valuesa

M f0 � ÿ0:5 f0 � 0 f0 � 0:5 f0 � ÿ0:5 f0 � 0 f0 � 0:5
NR � 0 NR � 0 NR � 0 NR � 5:0 NR � 5:0 NR � 5:0

0 1.08377 0.90521 0.75443 0.37375 0.35239 0.33215

5 0.63779 0.36508 0.21762 0.14673 0.11218 0.08478

a Gr � 1:0; Pr � 0:71, dx � 0 and D � 0:

Table 2

Wall velocity gradient �ÿf 00�0�� for various f0; M and NR valuesa

M f0 � ÿ0:5 f0 � 0 f0 � 0:5 f0 � ÿ0:5 f0 � 0 f0 � 0:5
NR � 0 NR � 0 NR � 0 NR � 5:0 NR � 5:0 NR � 5:0

0 0.77130 0.51157 0.32742 0.40921 0.27405 0.17859

5 5.17166 4.91476 4.67416 5.15463 4.90735 4.67123

a Gr � 1:0; Pr � 0:71; dx � 0 and D � 0:
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cause no e�ect on ÿf 00�0� for Gr � 0 since the ¯ow and thermal problems are uncoupled and to
decrease it for Gr � 5. The wall heat transfer ÿh0�0� is also predicted to decrease as D increases.
These behaviors are clearly displayed in Tables 4 and 5.

5. Conclusion

The problem considered in this work was that of steady, hydromagnetic boundary-layer ¯ow
over an accelerating semi-in®nite porous surface in the presence of thermal radiation, buoyancy
and heat generation or absorption. A similarity transformation was employed to change the
governing partial di�erential equations into ordinary ones. These equations were solved numer-
ically by the ®nite-di�erence methodology. The obtained results were compared with previously
published work and were found to be in excellent agreement. It was found that owing to the
presence of thermal radiation, positive wall mass transfer, magnetic ®eld, or heat generation, the
wall heat transfer decreased. However, the wall heat transfer increased due to the presence of the
thermal buoyancy e�ect. It is hoped that the solutions presented in this work with the various
investigated e�ects would be useful for validation of future work on ¯ow and heat transfer on a
continuously stretched surface.

References

[1] B.C. Sakiadis, Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-

dimensional and axisymmetric ¯ow, AIChE J. 7 (1961) 26±28.

[2] B.C. Sakiadis, Boundary-layer behavior on continuous solid surfaces: II. The boundary layer on a continuous ¯at

surface, AIChE J. 7 (1961) 221±225.

[3] F.K. Tsou, E.M. Sparrow, R.J. Goldstein, Flow and heat transfer in the boundary layer on a continuous moving

surface, Int. J. Heat Mass Transfer 10 (1967) 219±235.

[4] L.E. Erickson, L.T. Fan, V.G. Fox, Heat and mass transfer on a moving continuous ¯at plate with suction or

injection, Ind. Eng. Chem. 5 (1966) 19±25.

[5] V.G. Fox, L.E. Erickson, L.T. Fan, Methods for solving the boundary layer equations for moving continuous ¯at

surfaces with suction and injection, AIChE J. 14 (1968) 726±736.

[6] L.J. Crane, Flow past a stretching plane, Z. Angew. Math. Phys. 21 (1970) 645±647.

[7] J. Vleggar, Laminar boundary-layer behavior on continuous accelerating surfaces, Chem. Eng. Sci. 32 (1977) 1517±

1525.

[8] V.M. Soundalgekar, T.V. Ramana Murty, Heat transfer past a continuous moving plate with variable temperature,

WarmeUnd Sto�ubertragung 14 (1980) 91±93.

[9] L.G. Grubka, K.M. Bobba, Heat transfer characteristics of a continuous stretching surface with variable

temperature, J. Heat Transfer 107 (1985) 248±250.

[10] K. Vajravelu, A. Hadjinicolaou, Convective heat transfer in an electrically conducting ¯uid at a stretching surface

with uniform free stream, Int. J. Eng. Sci. 35 (1997) 1237±1244.

[11] P.S. Gupta, A.S. Gupta, Heat and mass transfer on a stretching sheet with suction or blowing, Can. J. Chem. Eng.

55 (1977) 744±746.

[12] C.K. Chen, M. Char, Heat transfer of a continuous stretching surface with suction or blowing, J. Math. Anal.

Appl. 135 (1988) 568±580.

[13] T.C. Chiam, Hydromagnetic ¯ow over a surface stretching with a power-law velocity, Int. J. Eng. Sci. 33 (1995)

429±435.

A.J. Chamkha / International Journal of Engineering Science 38 (2000) 1699±1712 1711



[14] I. Pop, T.Y. Na, A note on MHD ¯ow over a stretching permeable surface, Mech. Res. Commun. 25 (1998) 263±

269.

[15] A.J. Chamkha, Hydromagnetic three-dimensional free convection on a vertical stretching surface with heat

generation or absorption, Int. J. Heat Fluid Flow, in press.

[16] M. Acharya, L.P. Singh, G.C. Dash, Heat and mass transfer over an accelerating surface with heat source in

presence of suction and blowing, Int. J. Eng. Sci. 37 (1999) 189±211.

[17] K. Vajravelu, J. Nayfeh, Hydromagnetic convection at a cone and a wedge, Int. Commun. Heat Mass Transfer 19

(1992) 701±710.

[18] A.J. Chamkha, Non-Darcy hydromagnetic free convection from a cone and a wedge in porous media, Int.

Commun. Heat Mass Transfer 23 (1996) 875±887.

[19] A. Raptis, Flow of a micropolar ¯uid past a continuously moving plate by the presence of radiation, Int. J. Heat

Mass Transfer 41 (1998) 2865±2866.

[20] A. Chakrabarti, A.S. Gupta, Hydromagnetic ¯ow and heat transfer over a stretching sheet, Q. Appl. Math. 37

(1979) 73±78.

[21] F.G. Blottner, Finite-di�erence methods of solution of the boundary-layer equations, AIAA J. 8 (1970) 193±205.

1712 A.J. Chamkha / International Journal of Engineering Science 38 (2000) 1699±1712


