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Abstract

The problem of unsteady laminar ¯ow and heat transfer of a particulate suspension in an electrically conducting ¯uid through

channels and circular pipes in the presence of a uniform transverse magnetic ®eld is formulated using a two-phase continuum model.

Two di�erent applied pressure gradient (oscillating and ramp) cases are considered. The general governing equations of motions

(which include such e�ects as particulate phase stresses, magnetic force, and ®nite particle-phase volume fraction) are non-

dimensionalized and solved in closed form in terms of Fourier cosine and Bessel functions and the energy equations for both phases

are solved numerically since they are non-linear and are di�cult to solve analytically. Numerical solutions based on the ®nite-

di�erence methodology are obtained and graphical results for the ¯uid-phase volumetric ¯ow rate, the particle-phase volumetric

¯ow rate, the ¯uid-phase skin-friction coe�cient and the particle-phase skin-friction coe�cient as well as the wall heat transfer for

plane and axisymmetric ¯ows are presented and discussed. In addition, these numerical results are validated by favorable com-

parisons with the closed-form solutions. A comprehensive parametric study is performed to show the e�ects of the Hartmann

magnetic number, the particle loading, the viscosity ratio, and the temperature inverse Stokes number on the solutions. Ó 2000

Elsevier Science Inc. All rights reserved.

1. Introduction

The importance and application of solid/¯uid ¯ows and
heat transfer in petroleum transport, wastewater treatment,
combustion, power plant piping, corrosive particles in engine
oil ¯ow, and many others are well known in the literature.
Particularly, the ¯ow and heat transfer of electrically con-
ducting ¯uids in channels and circular pipes under the e�ect of
a transverse magnetic ®eld occurs in magnetohydrodynamic
(MHD) generators, pumps, accelerators, and ¯owmeters and
has possible applications in nuclear reactors, ®ltration, geo-
thermal systems, and others. The possible presence of solid
particles such as ash or soot in combustion MHD generators
and plasma MHD accelerators and their e�ect on the perfor-
mance of such devices led to studies of particulate suspensions
in conducting ¯uids in the presence of magnetic ®elds. For
example, in an MHD generator, coal mixed with seed is fed
into a combustor. The coal and seed mixture is burned in
oxygen and the combustion gas expands through a nozzle
before it enters the generator section. The gas mixture ¯owing
through the MHD channel consists of a condensable vapor
(slag) and a non-condensable gas mixed with seeded coal
combustion products. Both the slag and the non-condensable
gas are electrically conducting (see, Loharsbi, 1980). The

presence of the slag and the seeded coal particles signi®cantly
in¯uences the ¯ow and heat transfer characteristics in the
MHD channel. Ignoring the e�ect of the slag, and considering
the MHD generator start-up condition, the problem reduces to
unsteady two-phase ¯ow in an MHD channel.

In general, there are two basic approaches to model two-
phase ¯uid/particle ¯ows. These are based on the Eulerian and
Lagrangian descriptions known from ¯uid mechanics. The
former treats both the ¯uid- and the particle-phases as inter-
acting continua (see, for instance, Marble, 1970) while the
latter treats only the ¯uid-phase as continuum with the parti-
cle-phase being governed by the kinetic theory (see Berlemont
et al., 1990). The present work employs the continuum ap-
proach and uses a modi®ed dusty-gas model to include parti-
cle-phase viscous stresses, ®nite particle volume fraction, and a
hydromagnetic body force.

The particle-phase viscous stresses can be used to model
particle±particle interaction. They can be thought of as a
natural consequence of the averaging processes employed to
model a discrete system of particles as a continuum (see, for
instance, Drew and Segal, 1971; Drew, 1983). Previously
published work which includes the particle-phase viscous
stresses can be found in the papers by Gidaspow (1986), Tsuo
and Gidaspow (1990), and Gadiraju et al. (1992). In the pre-
sent work, both the ¯uid- and the particle-phases are assumed
to be incompressible and have constant properties, and the
particle-phase volume fraction is assumed to be constant and
®nite. In reality, the particle-phase volume fraction is non-
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uniform but it is assumed to be constant herein so as to allow
the governing equations to be solved analytically. In order to
model many situations, multiphase (¯uid±particle) theories will
eventually need to allow for a transition of the particle-phase
from ¯uid-like behavior at low volume fraction to solid-like
behavior at large volume fraction. The inclusion of a particle-
phase viscosity as a function of the volume fraction represents
a step in that direction (Gadiraju et al., 1992). It should be
noted that if the particle-phase viscosity is allowed to increase
rapidly with the volume fraction, the particle-phase will behave
as a rigid body at large values of the volume fraction. This is
not done herein and the particle-phase viscosity is assumed to
be constant in order to obtain closed-form solutions. However,
there have been some published works which predict variable
particle-phase volume fraction (see, for instance, Soo, 1969;
Sinclair and Jackson, 1989; Drew and Lahey, 1982). The in-
clusion of a lift force in the governing equations is su�cient
(but not necessary) to produce non-uniform volume fraction
distribution. In addition, as a result of the inclusion of the
particle-phase viscous stresses, the particle-phase will have a
corresponding pressure. This pressure will be constant for
uniform particle-phase volume fraction situations and, there-
fore, the particle-phase pressure gradient will vanish.

The single-phase ¯ow of conducting ¯uids in pipes with
circular cross-sections has been investigated by many authors
(see, for instance, Shercli�, 1956; Gold, 1962). Tseng and Sahai
(1982) reported solutions for steady MHD ¯ow of a suspen-
sion in pipes. Dube and Sharma (1975) and Ritter and Ped-
dieson (1977) reported solutions for unsteady dusty-gas ¯ow in
a circular pipe in the absence of a magnetic ®eld. Related work
on channel ¯ow can be found in the thesis by Ritter (1976), the
papers by Mitra and Bhattacharya (1981) and Chamkha
(1995a, 1995b), and the book by White (1991). The purpose of
this paper is to obtain closed-form transient solutions for
hydromagnetic two-phase particulate suspension ¯ow in
channels and circular pipes and numerical solutions for the
thermal problem. This will be done for both oscillating and
ramp pressure gradients applied along the ¯ow direction.

2. Governing equations

Consider unsteady, laminar, hydromagnetic, fully devel-
oped, plane and axisymmetric ¯ow of a particle/¯uid suspen-
sion in a horizontal channel or a circular pipe due to the action
of an arbitrary time-varying pressure gradient. A uniform
transverse magnetic ®eld is applied normal to the ¯ow direc-
tion (see Fig. 1). The ¯uid-phase is assumed to be electrically
conducting while the particle-phase and the pipe or channel
walls are assumed to be electrically non-conducting. No elec-
tric ®eld is assumed to exist and the magnetic Reynolds
number is assumed to be small so that the induced magnetic
®eld and the Hall e�ect of MHDs are negligible. The governing
equations for this study are based on the conservation laws of
mass, linear momentum and energy of both phases. In this
work, it is assumed that both phases are treated as two inter-
acting continua (see, for instance, Marble, 1970). The inter-
action between the phases is restricted to the interphase drag
force which is modeled by Stokes linear drag theory and
the interphase heat transfer. Under these assumptions, the

Notation

a pipe radius or channel half width
B0 magnetic induction
c ¯uid-phase speci®c heat
C ¯uid-phase skin-friction coe�cient de®ned in Eq. (7)
cp particle-phase speci®c heat
Cp particle-phase skin-friction coe�cient de®ned in Eq.

(7)
Ec Eckert number, (G0a2/l)2/(cT1)
F dimensionless ¯uid-phase velocity, V/(G0a2/l)
Fp dimensionless particle-phase velocity, Vp/(G0a2/l)
G dimensionless pressure gradient,)1/G0 oP=oz
J1 ®rst-order Bessel function of the ®rst kind
J0 zeroth-order Bessel function of the ®rst kind
k ¯uid thermal conductivity

M Hartmann number,
��������
r=l

p
B0a

P pressure
Pr Prandtl number, lc/k
Q ¯uid-phase volumetric ¯ow rate de®ned in Eq. (7)
Qp particle-phase volumetric ¯ow rate de®ned in Eq. (7)
qw wall heat ¯ux de®ned in Eq. (7)
r distance in the radial direction
t time
T ¯uid-phase temperature
T0 ¯uid-phase wall temperature

Tp particle-phase temperature
V ¯uid-phase velocity
Vp particle-phase velocity
z axial direction

Greeks
x momentum inverse Stokes number, a2q/(lsv)
b viscosity ratio, lp/l
e temperature inverse Stokes number, a2q/(lsT)
/ particle-phase volume fraction
c speci®c heat ratio, cp/c
g dimensionless radial distance, r/a
j particle loading, qp //(q(1)/))
km, kn eigenvalues
l ¯uid-phase dynamic viscosity
lp particle-phase dynamic viscosity
h dimensionless ¯uid-phase temperature, T/T0

hp dimensionless particle-phase temperature, Tp/T0

q ¯uid-phase density
qp particle-phase density
r ¯uid electrical conductivity
s dimensionless time, t/(a2q/l)
s0 reference dimensionless time
st temperature relaxation time
sv momentum relaxation time
x circular frequency of oscillation

Fig. 1. Problem de®nition.
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governing equations with j � 0 for plane channel ¯ow and
j � 1 for axisymmetric pipe ¯ow can be written in dimen-
sionless form as

oF
os
� o2F

og2
� j

g
oF
og
� ja�Fp ÿ F � ÿM2F � G�s�; �1�

oFp

os
� b

o2Fp

og2
� j

g
oFp

og
� a�F ÿ Fp�; �2�

oh
os
� 1

Pr
o2h
og2

�
� j

g
oh
og

�
� Ec

oF
og

� �2

� Ec ja Fp

ÿ ÿ F
�2

� Ec M2F 2 � jce hp

ÿ ÿ h
�
; �3�

ohp

os
� b Ec

c
oFp

og

� �2

ÿ e�hp ÿ h�; �4�

where b � lp=l, a � a2q=�lsv�, M � ��������
r=l

p
B0a, Pr � lc=k,

c � cp=c, Ec � �G0a2=l�2=�cT1�, e � a2q=�lsT�, are the viscos-
ity ratio, momentum inverse Stokes number, the Hartmann
number, the Prandtl number, the speci®c heat ratio, the Eckert
number, and the temperature inverse Stokes number, respec-
tively. It should be noted that in obtaining Eqs. (1)±(4) the
following non-dimensionalization parameters are employed
where the meaning of the parameters is given in the Notation:

r � ag; t � a2qs=l; qp � jq�1ÿ /�=/;
oP=oz � ÿG0G�s�; V �r; t� � G0a2=l F �g; s�;
Vp�r; t� � G0a2=l Fp�g; s�; T �r; t� � T0h�g; s�;
Tp�r; t� � T0hp�g; s�:

�5�

Eqs. (1)±(4) are supplemented by the following dimensionless
initial and boundary conditions:

F �g; 0� � 0; Fp�g; 0� � 0; F �0; s� 6� 1;
Fp�0; s� 6� 1; F �1; s� � 0; Fp�1; s� � 0;

h�g; 0� � 0; hp�g; 0� � 0; h�0; s� 6� 1;
hp�0; s� 6� 1; h�1; s� � 1:

�6�

Of special interest in the present work is to observe the be-
haviors of the volumetric ¯ow rates (Q and Qp) for the ¯uid-
and the particle-phases, the ¯uid- and particle-phase skin-
friction coe�cients (C and Cp) and the wall heat transfer �qw�
at the upper wall of the channel under various conditions.
These physical parameters can, respectively, be de®ned taking
into account the ¯ow symmetry of the problem as follows:

Q � 2

Z 1

0

�pg�dF �g; s� dg; Qp � 2

Z 1

0

�pg�dFp�g; s� dg;

C � ÿ oF
og
�1; s�; Cp � ÿbj

oFp

og
�1; s�;

qw � ÿ1

Pr Ec
oh
og
�0; s�; d � 0; for plane flow;

1; for pipe flow:

� �7�

3. Analytical results

Eqs. (1)±(4) and (6) represent an initial-value problem.
Since the ¯ow of the suspension is assumed incompressible
with constant properties, the hydrodynamic problem is un-
coupled from the thermal problem. In addition, the hydrody-
namic problem consisting of Eqs. (1) and (2) is linear and can
be solved by the method of expansion in orthogonal functions.
However, the thermal problem is non-linear and must be

solved numerically. Therefore, respectively closed-form and
numerical solutions for the hydrodynamic and thermal prob-
lems will be reported in this paper. The hydrodynamic solution
can be obtained by assuming that the solutions for F and Fp

take on the forms

j � 0 : F �g; s� �
X1
n�1

Hn�s�cos�kng�;

Fp�g; s� �
X1
n�1

Hpn�s�cos�kng�;

j � 1 : F �g; s� �
X1
n�1

Hn�s�J0�kng�;

Fp�g; s� �
X1
n�1

Hpn�s�J0�kng�;

�8�

where kn are roots of the equation cos�kng� � 0 for channel
¯ow and the equation J0�kng� � 0 (J0 being the zeroth-order
Bessel function of the ®rst kind) for pipe ¯ow and Hn and Hpn

are functions to be determined. Substituting Eqs. (8) and their
derivatives into Eqs. (1) and (2) (with the non-homogeneous
part of these equations represented by a series in cos�kng� for
channel ¯ow and J0�kng� for pipe ¯ow), multiplying by
cos�kmg�for channel ¯ow and by gJ0�kmg�for pipe ¯ow (to take
advantage of the orthogonality property of Fourier cosine and
Bessel functions), and then integrating with respect to g from 0
to 1 yield

_Hn � k2
n

ÿ � ja�M2
�
Hn ÿ jaHpn � bnG�s�; �9�

_Hpn � bk2
nHpn � a�Hpn ÿ Hn� � 0; �10�

where a dot denotes ordinary di�erentiation with respect to s
and bn � 2�ÿ1�n�1

=kn for channel ¯ow and bn � 2=�knJ1�kn��
(J1 being the ®rst-order Bessel function of the ®rst kind) for
pipe ¯ow. Combining Eqs. (9) and (10) gives

�Hn � k2
n�1

ÿ � b� � a�1� j� �M2
�

_Hn � bk2
n M2
ÿÿ � k2

n � ja
�

� a k2
n

ÿ �M2
��

Hn � bn
_G�s�

�
� bk2

n

ÿ � a
�
G�s�

�
: �11�

It should be mentioned that analytical solutions for the case of
constant pressure gradient along with their corresponding
steady-state solutions were reported earlier by Chamkha
(1995a) for channel ¯ow. Therefore, the above equation will be
solved only for oscillating and ramp pressure gradient condi-
tions.

With the solutions of F and Fp (given by Eqs. (8)) known,
the corresponding expressions for Q; Qp; C and Cp can be
written as

Q � 2
X1
n�1

�ÿ1�n�1 Hn=kn; Qp � 2
X1
n�1

�ÿ1�n�1Hpn=kn;

C �
X1
n�1

�ÿ1�n�1knHn; Cp � bj
X1
n�1

�ÿ1�n�1knHpn

�12�

for plane ¯ow and

Q � 4p
X1
n�1

Hn bnk
2
n

ÿ �
;

�
Qp � 4p

X1
n�1

Hpn bnk
2
n

ÿ �
;

�
C � 2

X1
n�1

Hn=bn; Cp � 2bj
X1
n�1

Hpn=bn

�13�

for axisymmetric ¯ow.
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4. Oscillating pressure gradient solutions

Assuming that the pressure gradient G�s� is a general
sinusoidal function of the form

G�s� � Gs sin�xs� � Gc cos�xs�; �14�
where x (a constant) is the circular frequency of oscillation,
and Gs and Gc are constants and substituting into Eq. (11)
results in

�Hn � k2
n�1

ÿ � b� � a�1� j� �M2
�

_Hn

� bk2
n M2
ÿÿ � k2

n � ja
�� a k2

n

ÿ �M2
��

Hn

� bn Gs bk2
n

ÿÿ � a
�ÿ Gcx sin�xs�

� Gc bk2
n

ÿÿ � a
�� Gsx

�
cos�xs��: �15�

The general solution to the above equation can be shown to be

Hn � c3 exp�s1s� � c4 exp�s2s� � c5 sin�xs�
� c6 cos�xs�; �16�

where

c5 � �X1Z1 � Y1Z2� X 2
1

ÿ� � Y 2
1

�
; c6 � �X1Z2 � Y1Z1� X 2

1

ÿ� � Y 2
1

�
;

X1 � bk2
n M2
ÿ � k2

n � ja
�� a M2

ÿ � k2
n

�ÿ x2;

Y1 � M2
ÿ � k2

n�1� b� � a�1� j��x;
Z1 � bn Gs bk2

n

ÿÿ � a
�ÿ Gcx

�
; Z2 � bn Gs bk2

n

ÿÿ � a
�� Gcx

�
:

�17�
Application of the initial conditions gives

c4 � �c6s1 ÿ c5x� bnGc�=�s2 ÿ s1�; c3 � ÿc4 ÿ c6: �18�
For this case the appropriate solution for Hpn takes on the
form

Hpn � 1 �ja� c1 s1

ÿÿ� � k2
n � ja�M2

�
exp�s1s�

� c2 s2

ÿ � k2
n � ja�M2

�
exp�s2s�

� c5x
ÿ � c6 M2

ÿ � k2
n � ja

�ÿ bnGc

�
cos�xs�

� c5 M2
ÿÿ � k2

n � ja
�ÿ c6xÿ bnGs

�
sin�xs��: �19�

The above analytical solutions are consistent with the solutions
for the special cases reported earlier by Ritter (1976) and
Chamkha (1995b).

5. Ramp pressure gradient solutions

For this special case, the pressure gradient G�s� is assumed
to take on the form

G�s� � s=s0; s < s0;

1; sP s0:

�
�20�

In this case, it is needed to consider both ranges when s < s0

and s P s0. Similar to the previous case of oscillating pressure
gradient, the expression for G�s� in the di�erent ranges is
substituted into Eq. (11) and solved by subjecting to the initial
conditions. It should be mentioned that the condition of
continuity of solutions must be ensured at s � s0. Without
going into the details, it can be shown that the solutions for Hn

and Hpn for this case can be written as

Hn �
c7 exp�s1s� � c8 exp�s2s� � A1 � B1s; s < s0;

R exp�s1s� � S exp�s2s� � Z; s P s0;

(
�21�

Hpn �

1 �ja�c7 s1 �M2 � k2
n � ja

ÿ ��
exp�s1s�

�c8 s1 �M2 � k2
n � ja

ÿ �
exp�s2s� � B1

� M2 � k2
n � ja

ÿ ��A1 � B1s� ÿ bns=s0; s < s0;

1 �ja� R s1 �M2 � k2
n � ja

ÿ �ÿ
exp�s1s�

�
�S s2 �M2 � k2

n � ja
ÿ �

exp�s2s�
� Z M2 � k2

n � ja
ÿ �ÿ bn

�
; s P s0;

8>>>>>>><>>>>>>>:
�22�

where

R � bn

ÿ � jaY � s2Z ÿ X s2

ÿ �M2 � k2
n � ja

�����s1 ÿ s2�exp�s1s0��; �23�

S � bn

ÿ � jaY � s1Z ÿ X s1

ÿ �M2 � k2
n � ja

�����s2 ÿ s1�exp�s2s0��; �24�

Z � bn bk2
n

ÿ � a
��

bk2
n M2
ÿÿ � k2

n � ja
�� a M2

ÿ � k2
n

��
; �25�

X � c7 exp�s1s0� � c8 exp�s2s0� � A1 � B1s0;

Y � 1 �ja� c7 s1

ÿÿ� �M2 � k2
n � ja

�
exp�s1s0�

� c8 s2

ÿ �M2 � k2
n � ja

�
exp�s2s0�

� �A1 � B1s0� M2
ÿ � k2

n � ja
�� B1 ÿ bn

�
;

�26�

A1 � bn=s0

ÿ ÿ B1 M2
ÿ � k2

n �1� b�
� a�1� j���� bk2

n M2
ÿÿ � k2

n � ja
�� a M2

ÿ � k2
n

��
;

B1 � bn bk2
n

ÿ � a
��

s0 bk2
n M2
ÿÿÿ � k2

n � ja
�� a M2

ÿ � k2
n

���
;

�27�

c7 � �A1s2 ÿ B1�=�s1 ÿ s2�; c8 � �A1s1 ÿ B1�=�s2 ÿ s1�: �28�
It should be mentioned that if both of b and M are formally set
to 0 in Eqs. (20)±(28), the results reported by Ritter (1976) for
a ramp pressure gradient are recovered.

6. Numerical results

The general physical e�ects of the various parameters on
the solutions of the oscillating pressure gradient case are
similar to those associated with the ramp pressure gradient
case. For this reason, attention will be focused on the latter
case. A representative set of hydrodynamic and thermal results
is given below for both channel and pipe ¯ows in the presence
of combined particle-phase viscosity and magnetic e�ects. All
subsequent results are obtained numerically using the ®nite-
di�erence methodology. The method employed is implicit and
iterative. Constant step sizes of 0.01 are used in the radial di-
rection and variable step sizes in time with an initial time step
of 0.01 and a growth factor of 1.02. These values are arrived at
after much numerical experimentation was performed to assess
grid independence. For example, when Dg was set to 0.001, no
signi®cant changes in results were observed in which the error
was only about 1%. In addition, when constant step sizes in s
were used, an average error of less than 2% was predicted. The
solution convergence criterion was based on the di�erence
between the current and the previous iterations and conver-
gence was assumed to achieve when this di�erence reached
10ÿ5. The numerical ¯ow solutions were checked against the
analytical results given in Eqs. (20)±(28) and were found to be
in excellent agreement. A representative comparison between
the numerical and analytical results for Q, Qp, C, and Cp is
shown in Figs. 2±5. It should be mentioned that in the
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numerical evaluation of the analytical solutions, 50 terms of
the series were used.

Figs. 2±5 present typical time histories for the ¯uid-phase
volume ¯ow rate Q, particle-phase volume ¯ow rate Qp, ¯uid-
phase skin-friction coe�cient C, and the particle-phase skin-
friction coe�cient Cp for both channel and pipe ¯ow situations
and various values of the Hartmann number M based on both
the numerical and analytical solutions, respectively. Imposi-
tion of a magnetic ®eld normal to the ¯ow direction gives rise
to a drag-like or resistive force in the direction of ¯ow. This
force is called the Lorentz force and it has the tendency to slow
down or suppress the movement of the ¯uid in the channel or
pipe, which in turn reduces the motion of the suspended par-
ticle-phase. This is translated into reductions in the average
velocities of both the ¯uid- and the particle-phases and, con-
sequently, in their ¯ow rates. In addition, the reduced motion
of the particulate suspension in the channel or pipe as a result
of increasing the strength of the magnetic ®eld causes lower
velocity gradients at the wall. This has the direct e�ect of re-
ducing the skin-friction coe�cients of both phases. These and
the previous behaviors are clearly evident in the decrease of Q,
Qp, C, and Cp as M increases as shown in Fig. 2, 3, 4 and 5,
respectively. Furthermore, it is also observed from these ®g-
ures that, in general, lower values of Q, Qp, C, and Cp are
predicted for the case of pipe ¯ow than for the case of channel
¯ow at the same conditions with the exception of Q for rela-
tively large values of M �M > 3�. The excellent agreement

between the numerical and analytical solutions for all of the
conditions considered is also apparent in these ®gures.

The e�ects of the particle loading parameter j on transient
channel and pipe ¯ow and heat transfer results for Q, Qp, C,
Cp and qw were obtained but not presented herein for brevity.
Similar to the magnetic ®eld e�ect, increases in the particle
loading or particle concentration in the channel or pipe cause
the movement of the ¯uid and the particles to be slower which
results in reductions in Q, Qp, and C and increases in the values
of Cp since it is directly proportional to j (see de®nition of Cp).
These behaviors were consistent with the obtained results.
Also, the e�ect of increasing j was found to decrease the
steady-state pro®les of the ¯uid-phase temperature h and the
particle-phase temperature hp. This decrease in temperature is
due to the decrease in the velocity distribution caused by in-
crease in the particle loading. However, the wall gradients of
the ¯uid temperature pro®les was predicted to increase as j
increased for all times. This caused the wall heat transfer qw to
increase as j was increased for all times.

Figs. 6 and 7 display the variations in the values of C and
Cp that are brought about by changes in the viscosity ratio b as
the ¯ow time progresses from non-steady to steady-state con-
ditions, respectively. Endowing the particle-phase with an ar-
ti®cial viscosity has been shown to be especially valid for dense
suspensions (see, Gidaspow, 1986; Tsuo and Gidaspow, 1990).

Fig. 2. E�ects of M on ¯uid-phase volume ¯ow rate time history.

Fig. 3. E�ects of M on particle-phase volume ¯ow rate time history.

Fig. 4. E�ects of M on ¯uid-phase skin-friction coe�cient time his-

tory.

Fig. 5. E�ects of M on particle-phase skin-friction coe�cient time

history.
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In these situations, as the particle-phase viscosity coe�cient lp

increases (that is, b increases), the suspension becomes more
viscous and will be moving with an e�ective viscosity l� lp.
This will represent the case of high particle concentration.
Therefore, as b increases, the ¯ow rates of both phases as well
as the ¯uid-phase wall friction decreases considerably. How-
ever, since Cp is de®ned as directly proportional to b, it in-
creases as b increases at all times. These facts are evident from
Figs. 6 and 7. Also, the wall heat transfer is observed to be
una�ected by changes in b. In addition, it is noted that the
changes in the ¯ow characteristics of both phases for b > 1 are
not as great as for 06 b6 1. Again, the ¯ow and heat transfer
characteristics for pipe ¯ow are lower than those associated
with channel ¯ow at the same conditions.

It is also observed from other results not presented herein
that increasing the Eckert number produces signi®cantly
higher steady-state temperature distributions for both the ¯u-
id- and the particle-phases. Also, increasing the ¯uid Prandtl
number Pr causes the steady-state temperature pro®les h and
hp as well as the wall heat transfer qw to decrease. In addition,
contrary to the cases discussed before, the pipe ¯ow results for
h and hp are found to be higher than those corresponding to
channel ¯ow at the same conditions.

The e�ects of the temperature inverse Stokes number e on
the temperature pro®les h and hp and the transient distribu-

tion of qw are presented in Fig. 8, 9 and 10, respectively.
Increases in the values of e increase the thermal coupling or
energy transfer between the ¯uid- and the particle-phases.
This causes the ¯uid-phase temperature to decrease and the
particle-phase temperature to increase as clearly shown in

Fig. 8. E�ects of e on the ¯uid-phase temperature pro®les.

Fig. 9. E�ects of e on the particle-phase temperature pro®les.

Fig. 10. E�ects of e on wall heat transfer coe�cient time history.

Fig. 7. E�ects of b on particle-phase skin-friction coe�cient time

history.

Fig. 6. E�ects of b on ¯uid-phase skin-friction coe�cient time history.
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Figs. 8 and 9, respectively. The particle-phase wall tempera-
ture is not prescribed since the particle-phase energy equation
is a ®rst-order di�erential equation and, therefore, it is ad-
justed through the thermal coupling process. The wall heat
transfer qw is dependent on the slope of the ¯uid-phase
temperature at the wall which increases as e increases. This
results in increasing the wall heat transfer as shown in Fig. 10.

7. Conclusion

In this paper, the transient ¯ow and heat transfer of a
particulate suspension in an electrically conducting ¯uid in a
channel and a circular pipe with an applied transverse mag-
netic ®eld was studied for the cases of both oscillating and
ramp pressure gradients. The governing equations for this
investigation were derived, non-dimensionalized, and solved
analytically and numerically. The analytical solutions were
obtained for the hydrodynamic or ¯ow problem while the
thermal problem was solved numerically using an implicit
®nite-di�erence method. Numerical evaluations of the exact
solutions were performed and successfully compared with the
fully numerical solutions. Graphical results for the ¯uid-
phase volumetric ¯ow rate, the particle-phase volumetric ¯ow
rate, the ¯uid-phase skin-friction coe�cient, and the particle-
phase skin-friction coe�cient are presented and discussed to
show the e�ects of the Hartmann magnetic number, the
particle loading, and the viscosity ratio on the solutions. In
addition, ®nite-di�erence solutions of the energy equations of
both phases were performed and graphical results were pre-
sented to show the in¯uence of the temperature inverse
Stokes number on the temperature pro®les of both phases
and the wall heat transfer. While favorable comparisons with
previously published theoretical work on this problem are
performed, no experimental data were found to check the
validity of the assumptions made. It is hoped that the results
reported herein will serve as a check for further theoretical
modeling and a stimulus for experimental work on this
problem.
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