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Abstract The problem of steady, two-dimensional, laminar, hydromagnetic flow with heat and
mass transfer over a semi-infinite, permeable flat surface in the presence of such effects as
thermophoresis and heat generation or absorption is considered. A similarity transformation is
used to reduce the goverming partial differential equations into ordinary ones. The obtained self-
similar equations are then solved numerically by an implicit, tri-diagonal, finite-difference scheme.
Favourable comparison with previously published work is performed. Numerical results for the
velocity, temperature and concentration profiles as well as for the skin-friction coefficient, wall
heat transfer and particle deposition rate are obtained and reported graphically for various
parametric conditions to show interesting aspects of the solution.
Nomenclature
B = magnetic induction q, = wall heat transfer defined in
c = particle concentration equation (16)
¢ = fluid specific heat at constant pressure ¢, = heat generation or absorption
C = Cunningham correction factor coefficient
Cr = skin-friction coefficient, Re, 1/ 2f”(O) Re, = local Reynolds number, 2u..x/v
Co, Sc = Schmidt number, v/D
C,, C; = constants in equation (7) St, = local Stanton number,
D = diffusion coefficient Re;l/ 2¢/(0)/Sc
Ec = Eckert number, #../(cy(Tw — Teo)) T = temperature
f = dimensionless stream function, u,v = horizontal and vertical velocity
P/ (Zuwwc)l/ 2 components, respectively
£y = dimensionless wall mass transfer vy = wall suction or blowing velocity
coefficient, 2v,(x/ (21)740@))1/ 2 Vr = thermophoretic velocity
Ha = Hartmann number, (20B%/(pu))"/?  xy = horizontal and vertical coordinates,
Js = wall particle flux defined in equation respectively.
17)
Kn = Knudsen number Greek symbols
International Journal of Numerial Nu, = local Nusselt number,—Re}/*#'(0)/2 A = dimensionless heat generation or
Vol 10 ?\I(Srzx, ggoo pp.u 13248 Pr = Prandtl number, ucy/A absorption coefficient, 2Q,/(pcyttoo)
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n = similarity parameter, 7 = wall shears stress defined in

3/ (o /2wc)1/ %) equation (15)
10 = dimensionless concentration, ¢/cx 0 = dimensionless temperature
K = thermophoretic coefficient defined (T—-Tx)/(Ty — Tw)
by equation (7) o = fluid electrical conductivity
Ag, Ap = thermal conductivity of fluid and 1 = stream function
diffused particles, respectively.
I = dynamic viscosity
v = kinematic viscosity
p = fluid density Subscripts
T = thermophoretic parameter defined oo = free stream
by equation (8) w = wall
Introduction

Deposition of particles from a fluid-particle mixture is a subject which attracted
many investigators due to its application in many engineering and natural
processes. These include environmental and atmospheric pollution, filtration,
sedimentation of particles on gas turbine blades, nuclear reactor safety,
particulate deposition on semi-conductor wafers in the electronic industry and
others. Deposition of particles on surfaces takes place by several mechanisms
such as Brownian diffusion, impaction, interception, sedimentation and other
field effects such as the electrostatic effects. As mentioned by Yiantsios and
Karabelas (1998), the particle size is a very important parameter for the particle
transport from the bulk of a flowing mixture and its attachment to the surface.
For example, for mixtures with particles in the colloidal size range, Brownian
diffusion controls the transport rate, while for mixtures with particles of much
larger sizes (> 10um) the particle inertia causes it to detach from the fluid
streamlines and impact the surface. Prieve and Ruckenstein (1974) analyzed
flow external to spheres as a model for deep-bed filtration. The effects of
sedimentation for particulate deposition in rectilinear flows over flat surfaces
were considered by Adamczyk and van de Ven (1981, 1982) and by Marmur
and Ruckenstein (1986) for the deposition of cells on a flat plate. The problem of
particulate deposition from a high temperature gas-particle flow with no
hydrodynamic interaction on to an adjacent cold flat surface was studied
previously by many investigators such as Goren (1977), Homsy et al. (1981),
Mills et al. (1984) and Batchelor and Shen (1985). All of these investigators
produced numerical solutions for the flow and temperature fields and then
obtained the particle deposition rate in the presence of thermophoresis.
Gokoglu and Rosner (1984a) and Tsai (1999) reported correlations for
predicting the deposition rate in the presence of thermophoresis. Jia ef al. (1992)
investigated numerically the interaction between radiation and thermophoresis
in forced convection laminar boundary-layer flow. The effect of thermophoresis
on laminar flow over cold inclined plate with variable properties was reported
by Jayaraj (1995). Natural convection laminar flow over a cold vertical flat plate
in the presence of thermophoresis was solved numerically by Jayaraj (1999) and
Jayaraj et al. (1999) for constant and variable properties, respectively. Chiou
(1998) analyzed the effect of thermophoresis on submicron particle deposition
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from a forced laminar boundary layer flow on to an isothermal moving plate
through similarity solutions. The same problem was studied on a vertical
isothermal cylinder by Chiou and Cleaver (1996). The effect of particulate
thermophoresis in reducing the fouling rate advantages of effusion-cooling was
analyzed by Gokoglu and Rosner (1984b). Also, the thermophoretic deposition
of small particles in laminar tube flow was considered by Walker et al. (1979).

In certain applications such as those dealing with chemical reactions and
dissociating fluids, possible heat generation or absorption effects may alter the
temperature distribution and, therefore, the particle deposition rate. This may
occur in such applications related to nuclear reactors, electronic chips, and semi-
conductor wafers. Previous investigations dealing with temperature-dependent
heat sources or sinks for different geometries can be found in the works of Sparrow
and Cess (1961), Vajravelu and Nayfeh (1992), Vajravelu and Hadjinicolaou (1997)
and Chambkha (1999).

The use of electrically-conducting fluids under the influence of magnetic fields
has gained interest in various industrial applications such as the semi-conductor
industries and the purification of molten metals from non-metallic inclusions. In
certain fluid-particle mixtures, the fluid phase may be electrically conducting. For
such situations, the presence of a magnetic field influences the flow and thermal
behavior of the suspension which, in turn, impacts the particle deposition rate
considerably. Some examples of investigations dealing with hydromagnetic flows
over a surface can be found in the work of Chakrabarti and Gupta (1979), Chiam
(1995), Chandran et al. (1996) and Vajravelu and Hadjinicolaou (1997).

The purpose of this work is to consider the effects of heat generation or
absorption and thermophoresis on steady, laminar, hydromagnetic, two-
dimensional flow with heat and mass transfer over a semi-infinite, permeable
flat surface.

Governing equations

Consider steady, laminar, two-dimensional boundary-layer flow with heat and
mass transfer over a semi-infinite, permeable flat surface. The flow takes place
in the positive xy plane with the surface being at the plane y = 0. The surface is
maintained at a constant temperature 7,, and allows for possible non-uniform
wall suction or blowing. A heat source/sink is placed within the flow to allow
for possible heat generation/absorption effects. In addition, the effect of
thermophoresis is taken into account as it helps in understanding mass
deposition on surfaces. The fluid is assumed to be Newtonian, electrically
conducting and heat generating/absorbing. A non-uniform magnetic field is
applied in the vertical y direction normal to the flow direction. The governing
equations for this physical situation are based on the usual balance laws of
mass, linear momentum, energy and mass diffusion modified to account for the
physical effects mentioned above. These equations are given by
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where x and y are the horizontal and vertical directions, respectively; «, v and T
are the fluid x-component (horizontal) of velocity, y-component (vertical) of
velocity, and temperature, respectively. ¢ is the mass or particle concentration
in the fluid; p, i, v, Ag, ¢y, and o are the fluid density, dynamic viscosity,
kinematic viscosity, thermal conductivity, specific heat at constant pressure
and electrical conductivity, respectively; B(x) and €), are the magnetic induction
and heat generation/absorption coefficient, respectively; D and V; are the
diffusion coefficient and the thermophoretic velocity, respectively; #., and T
are the free stream velocity and temperature, respectively.

The boundary conditions for this problem can be written as
u(x,0) = 0,0(x,0) = —0v,(x), T(x,0) = Ty, c(x,0) =cy
u(x,00) = oy, T(x,00) =To , c(x,00) = (oo

()

where v,(x) is the wall suction (> 0) or blowing (< 0) velocity, T, ¢, and ¢, are
the fluid wall temperature, wall mass concentration, and the free stream mass
concentration, respectively.
In equation (4), the thermophoretic velocity Vo, was given by Talbot ef al.
(1980) and later by Tsai (1999) as
vT kv 0T

VT:—KJVT:—Ta—y (6)

where & is the thermophoretic coefficient which ranges in value from 0.2 to 1.2
as indicated by Batchelor and Shen (1985) and is defined by
B Cs(A\g/ Ny + CGKn)C @)
- (14 3C,Kn)(1 4 2)\;/\s + 2CKn)

where C,,, C,, and C; are constants, A\, and ), are the thermal conductivities of
the fluid and diffused particles, respectively. C is the Cunningham correction
factor and Kn is the Knudsen number. A thermophoretic parameter — can be
defined as done previously by Mills et al. (1984) and Tsai (1999) as follows
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T:/{(Tw; Ty) (8)

Typical values of 7 are 0.01, 0.1, and 1.0 corresponding to approximate values
of —k(Tw — Tw) equal to 3, 30, and 300K for a reference temperature of 300K.
It is convenient to substitute the following similarity transformations

Uso 1/2 . 1/2 T— T i
1=3(5) o ¥= @) ) 0= o= ()
(where v is the stream function defined in the usual way such that
u= g;" 0= ‘D) into equations (1) through (5) to yield
f/// + ﬁr// _ HaZ(f/ _ 1) -0 (10)
%e” + f0 + Ec(f")* + EcHa(f — 1> + A6 =0 (11)
1 U / / /!
§qﬁ + (f—70) — 710" =0 (12)

(13)

where a prime denotes ordinary differentiation with respect to 7, f, =
20,(x/ (2vits0))"/? is the dimensionless wall mass transfer coefficient such that
£, > 0indicates wall suction and f,< 0 indicates wall injection and

2
Ha? =278 pp_F9 g M.
Pllso k p(Tw— Two) (14)
A 20, sV
= , O =—=
PCpUoo D

are the square of the Hartmann number, Prandtl number, Eckert number,
dimensionless heat generation or absorption coefficient, and the Schmidt
number, respectively. It should be noted that for a Slmllarlty solution f, must be
constant. For this condition to be satisfied, v, must be proportional to x /2

The skin-friction coefficient, wall heat transfer coefficient (or local Nusselt
number) and the wall deposition flux (or the local Stanton number) are
important physical parameters. These can be defined as

_1/2 40 ou
G = =ReVH0) 5 7 = wig (15)
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where Re, = 2u..x/v is the local Reynolds number.

Numerical method

Equations (10) through (12) represent the transformed similarity equations
of the governing momentum, energy, and concentration equations,
respectively. They are solved numerically by an implicit, iterative, tri-
diagonal finite-difference method similar to that discussed by Blottner
(1970).

The third-order differential equation (10) is converted into a second-
order one by substituting V = f'. Then, all second-order equations for V, 6,
and ¢ are discretized using three-point central difference quotients while
the first-order differential equation V = f’ is discretized by the trapezoidal
rule. As a consequence, a set of algebraic equations results. With the non-
linear terms evaluated at the previous iteration, the algebraic equations are
solved with iteration by the well-known Thomas algorithm (see Blottner,
1970). It is expected that the largest changes in the dependent variables
occur in the region close to the surface. A small step size is needed there to
accurately approximate the derivatives numerically. On the other hand,
away from the surface small changes in the dependent variables are
expected. Therefore, a large step size may be used there. For this reason, a
variable step size scheme was employed. The initial step size An; was equal
to 0.001 and the growth factor G was equal to 1.03 such that An, 1 = GAn;.
The employed computational domain consisted of 196 grid points. This
gave 1), = 10.3 as representing the position at infinity. This value of  was
proved to be satisfactory for all conditions considered in this work ranging
from small values of Sc (thick concentration boundary layer) to very large
values of Sc (thin concentration boundary layer). A convergence criterion
based on the relative difference between the current and the previous
iterations was employed. When this difference reached 107, the solution
was assumed converged and the iteration process was terminated. A
representative set of numerical results is shown graphically in Figures 1 to
14 to illustrate the influence of the various physical parameters on the
solution.

Table I presents a comparison of the local Stanton number (St, Re}/ 2\V/2)
obtained in the present work and those obtained earlier by Mills et al. (1984)
and Tsai (1999). It is clearly observed that good agreement between the results
exists. This lends confidence in the numerical method.
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T fo Mills et al. (1984) Tsai (1999) Present work
10,4
0.01 1.0 0.7091 0.7100 0.7093
0.01 0.5 0.3559 0.3565 0.3590
0.01 0 0.0029 0.0029 0.0030
0.1 1.0 0.7265 0.7346 0.7241
438 0.1 0.5 0.3767 0.3810 0.3810
0.1 0 0.0277 0.0275 0.0280
0.1 -0.004 0.0249 0.0246 0.0246
Table L 0.1 -0.005 0.0242 0.0239 0.0241
Comparison of 1.0 1.0 0.8619 09134 0.8932
St, Re}c/z\/é with those 1.0 0.5 0.5346 0.5598 0.5450
of Mills ef al. (1984) and 1.0 0 0.2095 0.2063 0.2120
Tsai (199%) for Sc > 1,000, 1.0 —0.004 0.2068 0.2034 0.2073
Ec=0Ha=0Pr=07 10 -0.005 0.2062 0.2027 0.2070
and A =0 1.0 —-0.250 0.0344 0.0295 0.0350

Results and discussion

In this section, a comprehensive numerical parametric study is conducted and
the results are reported in terms of graphs. This is done in order to illustrate
special features of the solutions.

Figures 1 to 3 present typical profiles for the velocity, temperature and
concentration for various values of the Hartmann number Ha, respectively for a
physical situation with heat generation and thermophoretic effect. Application
of a magnetic field moving with the free stream has the tendency to induce a
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motive force which increases the motion of the fluid and decreases its boundary
layer. This is accompanied by a decrease in the fluid temperature and a slight
increase in the concentration. In addition, the thermal boundary layer decreases
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Figure 2.
Effects of Ha on
temperature profiles

Figure 3.
Effects of Ha on
concentration profiles
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Figure 4.
Effects of £, on
velocity profiles

as a result of increasing the strength of the magnetic field. Inspection of Figure
2 shows that a distinctive peak in the fluid temperature occurs in the fluid close
to the boundary and not at the surface. This is due to the presence of the heat
generation effect (A = 0.75) used to obtain this Figure. It is seen that this peak
value diminishes as the Hartmann number increases. This and all previous
facts are clearly shown in Figures 1 to 3. It should be noted that in the absence
of the magnetic field (Ha = 0), the velocity profile /' is in excellent agreement
with the Blasius solution for boundary-layer flow over a flat plate reported by
White (1974).

Figures 4 to 6 illustrate the influence of the wall mass transfer coefficient 7, on
the velocity, temperature, and concentration profiles, respectively. Imposition of
wall fluid suction (f, > 0) for this problem has the effect of reducing all of the
hydrodynamic, thermal and concentration boundary layers causing the fluid
velocity and its concentration to increase while decreasing its temperature. On
the other hand, imposition of wall fluid injection or blowing produces the
opposite effect, namely decreases in the fluid velocity and concentration and an
increase in its temperature. These effects are accompanied by increases in all of
the hydrodynamic, thermal and concentration boundary layers.

Figure 7 depicts the influence of the dimensionless heat generation or
absorption coefficient § on the fluid temperature profile. As mentioned before,
owing to the presence of a heat source or a heat generation effect (A > 0), the
thermal state of the fluid increases causing the thermal boundary layer to
increase. In the event that the strength of the heat source is relatively large,
the maximum fluid temperature does not occur at the wall but rather in the
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fluid region close to it. Conversely, the presence of a heat sink or a heat
absorption effect (A < 0) causes a reduction in the thermal state of the fluid,
thus producing lower thermal boundary layers. These facts are obvious from
Figure 7.
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Figure 7.
Effects of A on
temperature profiles

Figures 8 and 9 show typical concentration profiles for various values of the
Schmidt number Sc and the thermophoretic parameter 7, respectively. It is
clear that the concentration boundary layer decreases while the concentration
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increases as the Schmidt number Sc increases. However, for the parametric
conditions used in Figure 9, the effect of increasing the thermophoretic
parameter 7 is limited to increasing the wall slope of the concentration profile
and decreasing the concentration for values of n > 1.0 without any significant
effect on the concentration boundary layer. This is true only for small values of
Sc for which the Brownian diffusion effect is large compared to the convection
effect. However, for large values of Sc (Sc > 1,000) the diffusion effect is
minimal compared to the convection effect and, therefore, the thermophoretic
parameter 7 is expected to alter the concentration boundary layer significantly.
This is consistent with the work of Goren (1977) on thermophoresis of aerosol
particles in flat-plate boundary layer.

The relative influence of both the viscous and magnetic dissipations on the
fluid temperature and concentration profiles was also investigated but the
results are not presented herein for brevity. It was observed from these results
that the temperature distribution increased while the concentration distribution
decreased slightly as a result of the viscous dissipation effect which acts as a
heat source. In addition, the magnetic dissipation (or Joule heating) effect which
acts as a heat sink was seen to decrease the temperature distribution and to
increase the concentration distribution slightly.

In Figures 10 to 12, the effects of £, Ha and Ec on the skin-friction coefficient
CfRe}/ 2(f"(0)), the wall heat transfer 2NuxRe;1/ 2(—#'(0)), and the wall
deposition flux SthcRe}C/ Z(gb’ (0)) are, respectively, presented. Inspection of
Figures 1 and 4 shows that the wall slope of the velocity profile increases with
increases in either of £, or Ha. This is consistent with Figure 10. Also, since
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Figure 10.

Effects of f, and Ha on
sking-friction
coefficients

Figure 11.
Effects of Ha, Ec, f, and
Ha on wall heat transfer
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equation (10) is uncoupled from equations (11) and (12), Ec has no influence on
f"(0). However, inspection of Figures 2 and 5 shows that the wall slope of the
temperature profile decreases with increases in either £, or Ha. This means that
the wall heat temperature increases as either £, or Ha increases as is the case in
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Figure 11. Also, it was observed from other results not presented herein that
(0'(0)) increases due to the presence of the viscous dissipation (Ec # 0, Ha = 0)
effect and decreases due to the Joule heating effect (Ec # 0, Ha # 0) in the
absence of viscous dissipation. This produces decreases in the wall heat
transfer for all conditions since the viscous dissipation is present as is evident
from Figure 11 except in the case of fluid injection (f, < 0) where the wall heat
transfer increases and then decreases as the value of Ha is increased. Similar
conclusions can be reached by inspection of Figures 3 and 6 where the wall
deposition flux is increased as either £, or Ha is increased for Ec = 0 and it is
increased slightly as Ha is increased for Ec # 0 as shown in Figure 12.

Finally, Figures 13 and 14 display the influence of the Prandtl number Pr, A
and 7 on the wall heat transfer and the wall deposition flux, respectively in the
absence of both viscous and magnetic dissipations. Again, by inspection of Figures
7 and 9, it can be concluded that the wall heat transfer decreases with heat
generation while it increases with heat absorption and that the wall deposition flux
increases as either 7 or A is increased. Also, it can be seen from Figure 13 that the
wall heat transfer increases with Pr for A < 0 and decreases for A > 0. In addition,
the wall deposition flux increases with Pr for A > 0 while it increases then
decreases for A < 0and 7 = 1.0 (forming a distinctive peak for small values of Pr)
or remains constant with Pr for A <0and 7 = 0.1 as is evident from Figure 14.

Conclusion

This work considered the effects of wall suction or injection, heat generation or
absorption, thermophoresis, and magnetic field on steady, laminar flow with heat
and mass transfer of an electrically-conducting fluid over a semi-infinite, porous
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flat surface. A set of similarity equations governing the fluid velocity and
temperature and the particle mass concentration was obtained by using a
similarity transformation. An implicit tri-diagonal finite-difference method was
successfully employed for the solution of the resulting coupled ordinary



differential equations. Comparisons with previously published work were
performed and the results were found to be in good agreement. A comprehensive
set of graphical results for the velocity, temperature, and concentration as well as
the skin-friction coefficient, local Nusselt number, and the local Stanton number
was presented and discussed. It was found that the local Nusselt number
increased as either the wall suction velocity or the Hartmann number was
increased and decreased due to the presence of either viscous dissipation or heat
generation effects. Also, the local Stanton number was predicted to increase as
the wall suction velocity, the Hartmann number, the thermophoresis effect or the
heat generation effect was increased. It is hoped that the present work can be
used as a vehicle for understanding the particle deposition phenomenon in the
presence of a magnetic field and a heat source of a sink.
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