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A B S T R A C T

Significant cooling is an essential requirement in the field of aeronautical and bio-medical engi-
neering, nuclear reactor system, solar collectors, and in development of electronic chips etc. In-
volving rotating conical geometries. In view of this, flow and heat transfer over conical geome-
tries subject to different constraints of motion are highly needed. Implementation of magnetic
field subject to flow pattern controls the fluid motion thereby imparting better cooling. Consider-
ation of nanofluid instead of regular fluid yields prominent cooling of the associated surface.
Such relevance has motivated the authors to work on magnetohydrodynamics and heat transfer
investigation of water-EG (50:50) mixture based Al2O3 and Fe3O4 past heated and rotating down-
pointing upright cone subject to impact of space and temperature varying non-uniform heat
source or sink. Numerical solution of dimensionless governing equations is accomplished by im-
plementing Runge-Kutta method. The findings indicate that swirl and axial velocities peter out
with rise in magnetic parameter while both exhibit opposite impact in response to slip parameter.
Temperature profiles upgrade due to amplification of space and temperature dependent parame-
ters. Skin friction and heat transportation upsurge with growth of solid volume fraction of
nanoparticle.

1. Introduction
Customizing the execution of industrial tools in the field of heat transfer (HT) is very challenging one. Early stage of research is

mainly aimed using base fluids for HT phenomenon, but later on, to overcome this, Choi and Eastman [1] came up with an innovative
type of fluids called nanofluids (NFs), which is a boon in enhancing the thermal conductivity. In recent years significant methods are
developed to modify thermal performance of fluids by putting nano sized solid particles like Al2O3, Cu, Ag etc. in fluids, which are
poor in HT. Hakeem et al. [2] conducted a comparative study with magnetized/non-magnetized nanoparticles. Soret-Dufour impacts
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on magnetized Casson NF flow across an inclined plane were perused by Lorenzini et al. [3]. They found that the solutal and thermal
distributions improve and velocity slows down with Casson parameter. The impact of Brownian movement and thermophoresis on
chemically-reacting magnetized Hiemenz stream across a nonlinear expandable plate was investigated by Ibrahim et al. [4]. Impacts
of slip on magnetic Casson nanofluid flow over a permeable stretched sheet were perused by Kumar et al. [5]. 3D NF stirring with a
non-uniform heat sink/source was studied by Thumma et al. [6]. They discovered that an upsurge in the stretching ratio parameter
had an impact on the axial velocity profile. Sheri and Thumma [7] investigated the thermal and solutal effects on natural convection
flow when various volume fractions of copper-water nanofluid were present. They discovered that concentration profiles get more
emaciated as Schmidt number increase. MHD convective NF flow over a rotating inclined thin layer of iron oxide based on sodium al-
ginate was discussed by Dawar et al. [8]. The effects of magnetohydrodynamics, heat source/sink, and gravity modulation on the
movement of a micropolar hybrid NF fluid across an inclined surface were studied by Ali et al. [9]. They found that fluid velocity am-
plifies with rising Hartmann number but emaciates with growth of micropolar material amount. The works on the related areas were
seen in Refs. [10–34].

Fluid flow due to rotating conical geometries has gained importance in the field of aeronautical engineering, cooling nuclear reac-
tor system, solar collectors, and medical field and in development of electronic chips etc. The investigation on free convection (Hering
and Grosh [35]), mixed convection (Yih [36]), variable viscosity (Hossain et al. [37]), MHD (Chamkha and Al-Mudhaf [38]), and
Soret/Dufour effect (Huang [39]) of nanofluids over rotating cone. The flow of MHD Ellis nanofluids around a spinning cone was pe-
rused by Ahmed et al. [40]. They stated that as bioconvection Rayleigh number ups, the temperature and velocity gradients decrease.
The flow of water-copper NF and enhancement of HT between vertical concentric cones were studied by Bairi [41]. Their findings
demonstrate that heat transmission improves with increasing thermal conductivity ratios, concentrations of nanoparticles, and
Rayleigh numbers. The double-diffusive magnetized Jeffrey fluid flow via the disc and cone region was analysed by Khan et al. [42].
They discovered that when the thermic relaxation factor and Prandtl number increase, the thermal distribution slows down. The mag-
netic Casson liquid considering the impacts of Dufour and Soret because of a revolving cone was analysed by Mustafa et al. [43]. The
magnetic parameter reduces the tangential and azimuthal velocities. Natural convective dissipative NF flow via a vertical cone was
observed by Ragulkumar et al. [44]. They discovered that the fluid velocity and temperature of NF rise in tandem with increment in
viscous dissipation parameter. The works on the related areas were carried out in Refs. [45–48].

The studied literature revealed that many works have carried out regarding the flow and HT of regular fluids or NFs over rotating
cone with magnetic field. However, none of them investigated the influences of space and temperature varying heat source/sink on
the stream and HT of NFs over rotating cone. The above gap in the existing literature and the relevance of NF flow over conical
geometries of industrial importance were the main motivation behind the present investigation. Therefore, the objective of the exist-
ing work is to investigate the free convection flow about a vertical spinning cone under the effect of magnetic field, space and temper-
ature varying heat source or sink using water-EG (50:50) mixture as base fluid and Al2O3 and Fe3O4 as nanoparticles. The novelties of
the present study are:
• Introduction of space and temperature varying heat sink or source.
• Consideration of Al2O3/Fe3O4 + water-EG (50:50) NF as the flow medium over a vertical spinning cone.

2. Modeling
Consider an incompressible, steady, laminar and 2D magnetohydrodynamic flow of Al2O3/Fe3O4 + H2O-C2H6O2 (50:50) NF along

a rotating down-pointing upright hot cone subjected to magnetic field and space conjugate temperature varying heat source or sink.
Cone has angular velocity shown by Ω and the flow's local radius is taken as r = xsinγ. Consider u,v,w are respectively velocity ele-
ments in x,yandθ directions. Problem geometry is shown in Fig. 1. Thermophysical properties of H2O-C2H6O2 (50:50) and
Al2O3/Fe3O4 are mentioned in Table 1.

Using the assumptions mentioned earlier, governing equations would be ([35,38,44,47]):
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Boundary conditions ([38,47]):
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Fig. 1. Flow diagram.

Table 1
Thermal and physical properties of H2O-C2H6O2 (50:50) base fluid and Al2O3/Fe3O4 nanoparticles at 300K

Cp ρ k β × 10−5 (K
1 ) σ Pr

EG and water (50:50) mixture
(
H20-C2H602) (50:50) 3288 1056 0.425 0.00341 0.00509 29.86

Aluminium oxide. (Al2O3) 765 3970 40 0.85 35×106 –

Magnetite (Fe3O4) 670 5180 9.7 1.3 2.5 × 104 –

u = 0, v = 0,T = T
∞

as y → ∞, (6)

Thermophysical models of nanofluid are described in Table 2.
Considering the transformation ([38,47]):
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Table 2
Thermophysical models of nanofluid.

Properties Nanofluid

Kinematic viscosity νnf = (1−ϕ)2.5[(1−ϕ)ρf+ϕρs]
μf

Density ρnf = (1-ϕ)ρf + ϕρs

Thermal diffusivity αnf = (ρCp)nf

knf

Heat capacitance (ρCp)nf = (ρCp)f(1 − ϕ) + ϕ(ρCp)s

Electrical conductivity σf
σnf = 1 + (σ+2)−(σ−1)ϕ

3(σ−1)ϕ , where σ = σf
σs

Thermal conductivity kf
knf = (2kf+ks)+ϕ(kf−ks)

(2kf+ks)−2ϕ(kf−ks)

Thermal expansion coefficient (ρβ)nf = (ρβ)f(1-ϕ) + ϕ(ρβ)s
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In which λ = Re2
Gr is mixed convection parameter,Re = ν

L2Ω sin γ denotes Reynolds number, Gr = ν2
gβf cos γ (T0−T∞)L3 is Grashof number,
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2 is magnetic parameter, Pr = α
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1
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Ω sin γ ) are first and second order slip pa-

rameter along axial direction, γ3 = L3 ( υ
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1

and γ4 = L4 ( υ
Ω sin γ ) are first and order slip parameter along swirl direction.

3. Local nusselt number (Nu) and skin friction coefficient(Cf)
Skin friction coefficients Cf and local Nusselt number Nu are defined as
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indicates wall shear stress.
The dimensionless forms of C_ (f ) &amp;Nu are
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4. Numerical procedure
The BVP may well be solved via fourth order Runge Kutta scheme with shooting techniques. We set F = y1, G = y4, Θ = y6, and

hence,
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The flow chart for numerical solutions of the developed problem is provided below.
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Flow chart for Numerical solutions.

5. Validation
The existing outcomes are compared with that of Chamkha and Al-Mudhaf [12] and Khan et al. [26] and showed excellent agree-

ment (See Tables 3 and 4). Ascending trend of HT rate is visualized with rise in Pr and λ.

6. Results and discussion
This part conveys the efficacies of space dependent parameter A∗, spin parameter ϵ, magnetic parameter M, nanoparticle volume

fraction φ, and temperature dependent parameter B∗ on the temperature profile H(y), swirl G(y) and tangential F'(y) velocity profiles
in the case of LST is explored. Further, variations of dimensionless Cf and Nu in response to sundry physical parameters are examined.
The values used for parameters in the simulation are: ϕ =0.01,M =1,λ =0.3,A∗ = B∗ = 1, γ1 = γ2 = γ3 = γ4 = 0.01.

Table 3
Comparison of Skin friction coefficient (Chamkha and Al-Mudhaf [12] and Khan et al. [26]).

Pr λ Chamkha et al. (2005) Khan et al. (2020) Present result

0.7 0 1.0255 1.0256 1.020466
1 2.2012 2.2017 2.078857
10 8.5041 8.5044 8.524585

10 0 1.0256 1.0254 1.020465
1 1.5636 1.5636 1.596575
10 5.0821 5.0825 5.335744

Table 4
Comparison of Nusselt number (Chamkha and Al-Mudhaf [12]and Khan et al. [26]).

Pr λ Chamkha et al. (2005) Khan et al. (2022) Present result

0.7 0 0.4299 0.4299 0.428518
1 0.6120 0.6120 0.612017
10 1.0097 1.3992 1.017308

10 0 1.4110 1.4113 1.408322
1 1.5662 1.5663 1.607681
10 2.3580 2.3582 2.35355
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6.1. Influence of M on F'(y), H(y) and G(y)
Fig. 2a reveals the effect of M on F'(y) and G(y) at φ = 0.1, ε = 1, Δ = 0.1 and Pr = 29.86. When M ameliorates F'(y) and G(y)

drop. This is because of the retarding nature of the Lorentz force which is due to the interaction of applied magnetic field and con-
ducting NF thereby reduces the velocity boundary layer thickness. As visualized, Al2O3 has higher tangential velocity compared to
Fe3O4 in M = 0 case. As M increases, magnetic nanoparticle Fe3O4 has high tangential velocity than non-magnetic nanoparticle
Al2O3.In case of G(y), Al2O3 has higher spin velocity than Fe3O4. The influence of M on H(y) for both Al2O3&amp; Fe3O4 is portrayed
in Fig. 2b. Further, H(y) ameliorates due to rise in M. However, there is subtle variation of H(y) between Al2O3&amp; Fe3O4 in appear-
ance/non-appearance of magnetic field.

6.2. Influence of ε on F'(y), G(y) and H(y)
Fig. 3a depicts that increase in spin parameter ε accounts for increase in F'(y) and decrease in G(y). In fact, increase in spin para-

meter intensifies the movement of the nanoparticles within the NF thereby enhances the fluid motion. It is seen that Fe3O4 has
higher tangential velocity than Al2O3.In Fig. 3b it is evident that as spin parameter rises H(y) peters out and Al2O3 has high tempera-
ture than Fe3O4. This implicates that heat transfer rate ameliorates for enhancement of spin parameter. In fact, rise in spin parame-
ter enables the nanoparticle move faster thereby spend less time near the solid boundary of the cone. As a result, temperature of the
NF fluid within BL emaciates.

6.3. Influence of A∗ and B∗ on H(y)
The effect of A∗ on H(y) is revealed in Fig. 4a. Applying A∗ > 0 (heat source) to BL produces energy which helps to increase H(y)

while considering heat sink (A (∗) < 0

)
in BL may absorb energy that ensures H(y) to drop. The nanomaterial Al2O3 has high tempera-

ture compared to Fe3O4. The influence of temperature dependent heat generation or absorption on temperature profile is analysed in
Fig. 4b. As B∗ ameliorates, temperature profile uplifts. Further, Al2O3 has high temperature compared to Fe3O4.

Fig. 2a. Role of M on F'(y) and G(y).

Fig. 2b. Role of M on H(y).
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Fig. 3a. Role of ε on F'(y) and G(y).

Fig. 3b. Role of ε on H(y).

Fig. 4a. Role of A∗ on H(y).

6.4. Influence of γ1,γ2,γ3,γ4 on F'(y) and H(y)
Fig. 5a, displays the impact of first order slip factor along tangential direction γ1 on F′ (η). As γ1 increases there is enhancement in

tangential velocity. The F'(y) is higher in the case of Fe3O4 than Al2O3. The F'(y) profiles are characterized by overshoots near tangen-
tial surface of the cone. This is because F′ (η) is higher adjacent to solid surface than that of ambient NF. Fig. 5b indicates the effect of
γ1 on H(y). As γ1 increases there is drop in temperature. Intensifying slip on the cone's surface reduces the fluid stuck to it. Conse-
quently, fluid temperature peters out. Further, Al2O3 has high temperature compared to Fe3O4. As a consequence, the NF with Al2O3
as nanoparticle exhibits thicker thermal boundary layer. Fig. 5c displays the role of first order slip parameter along axial direction γ2

Case Studies in Thermal Engineering 63 (2024) 105220 
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Fig. 4b. Role of B∗ on H(y).

Fig. 5a. Role of γ1 on F′(η).

Fig. 5b. Role of γ1 on H(η).

on velocity profile F′ (η). As γ2 rises there is emaciation in F′ (η) and therefore, velocity boundary layer thickness decays. So rise in slip
parameter γ2 generates decelerated flow of NFs in BL region near the surface. Amplifying slip on the cone's surface can lessen the liq-
uid stuck to it which may lead the shear stress to diminish and consequently can impact the movement of the fluid. In addition, Fe3O4
possesses higher velocity than that of Al2O3. In case of temperature profile H(y), increase in γ2 leads to intensification of temperature
H(y). Further, Al2O3 has high temperature than Fe3O4 (Fig. 5d). Fig. 5e illustrates that increasing the value of γ3 leads to augmenta-
tion of F' (η). Further, F' (η) of Al2O3 nanofluid is lower than that of Fe3O4 nanofluid. A similar trend η is visualized for temperature
profile H (η) in response to rise in γ3 (Fig. 5f). Fig. 5g and Fig. 5h illustrate that the amplifying γ4 leads to enhancement of F' (η) and
enervation in H (η). In Fig. 5g, Al2O3 is dominated by Fe3O4, while opposite trend is visualized in Fig. 5h.
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Fig. 5c. Role of γ2 on F′(η).

Fig. 5d. Role of γ2 on H(η).

Fig. 5e. Role of γ3 on F'(η).

6.5. Influence of ϕ,M.A∗,B∗ on CfRe1/2 and NuRe‐ 1/2

The values of CfRe1/2 and NuRe-1/2 for sundry ϕ, M, A∗,B∗ for Al2O3 and Fe3O4 with LST is listed in Table 5. It is noticed that
NuRe−1/2 decreases whereas CfRe1/2 increases as A∗ and B∗ grow. By comparing nanoparticles Al2O3 and Fe3O4, Fe3O4 possessessignifi-
cantly higher CfRe1/2 and NuRe-1/2. Both NuRe-1/2 and CfRe1/2 peter out due to strengthening of magnetic field. However, they exhibit
reverse trend with increment in volume fraction ϕ.
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Fig. 5f. Role of γ3 on H(η).

Fig. 5g. Role of γ4 on F'(η).

Fig. 5h. Role of γ4 on H(η).

7. Conclusions
The existing study deals with the free convective flow and HT of Al2O3/Fe3O4 + water-EG (50:50) NF over a vertical spinning cone

subject to magnetic field, space and temperature varying heat source or sink. The current problem may be utilized in the field of aero-
nautical engineering, cooling nuclear reactor system, solar collectors, and medical field and in development of electronic chips etc.
Employing rotating conical geometries. It is worth to mention the following points from the investigation:
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Table 5
The values of .CfRe1/2.and .NuRe-1/2.for sundry .ϕ,.M, A∗,B∗.for Al2O3 and Fe3O4 with linear surface temperature.

ϕ M A∗ B∗ CfRe1/2 NuRe‐ 1/2

Al2O3 Fe3O4 Al2O3 Fe3O4

0.01 1 1 1 2.127103 3.237418 2.175797 2.398573
0.02 3.279087 5.316236 2.445315 2.686296
0.03 4.373248 7.292505 2.640275 2.87445
0.01 1 1 1 2.127103 3.237418 2.175797 2.398573

2 1.986764 3.089628 2.03683 2.278629
3 1.903397 2.997533 1.942622 2.19384

0.01 1 −2 1 2.048414 3.103143 2.235011 2.44377
0 2.098257 3.186411 2.196482 2.413952
2 2.159075 3.296437 2.153922 2.382585

0.01 1 1 −1 2.120062 3.225694 2.195829 2.41859
0 2.12356 3.231517 2.185878 2.408656
1 2.127103 3.237418 2.175797 2.398573

0.01 1 1 0.1 1.204577 1.641722 1.864215 2.030396
0.5 2.956383 4.673896 2.354564 2.584571
1 4.853887 7.987911 2.607726 2.808399

• Axial velocity F′(y) reduces with rise in M,ε,γ2 while it shows reverse trend with growth of γ1.
• Swirl velocity G(y) peters out due to amplification of M,ε,γ3 while it reverses the trend with rise in γ4.
• Temperature profiles H(y) upgrades with increase in M,A∗,B∗,γ2,γ3 while reverse effect is attained due to rise in ε,γ1,γ4.
• As observed, Fe3O4 exhibits higher velocity than that of Al2O3 while Al2O3 possesses higher temperature than that of Fe3O4.
• The surface viscous drag (CfRe 2

1 ) and heat transfer rate (NuRe− 2
1 ) enervate due to strengthening of applied magnetic field

while the reverse effect is visualized with amplification of ϕ for both Al2O3/Fe3O4 + water nanofluids.

7.1. Research questions to understand the significance of the results of the current study
• What are the roles of the first and second order slip mechanisms on the behavior of velocities and temperature of magnetic

nanofluid flow over rotating conical surfaces.
• Mention the influence of space and temperature varying heat generation/absorption on thermal behavior of magnetic NF flow

over rotating conical surfaces.
• In what way the findings of the existing study serve scientifically to the society/industrial world?
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Nomenclature
(u, v, w) velocity elements in the x, y and θ directions (ms-1)
x coordinate measured along the plane (m)
y coordinate normal to the plane (m)
MHD magnetohydrodynamic
NF nanofluid
HT heat transfer
BL boundary layer
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ρ Density (Kg m−3)
(ρCp) specific heat capacity
μ dynamic viscosity
σ electrical conductivity
k thermal conductivity (Wm−1K−1)
β thermal expansion coefficient (K−1)
T temperature (K)
υ kinematic viscosity (m2s−1)
γ half of the vertex angle (rad)
Ω angular speed of cone (rads-1)
g acceleration due to gravity (ms-2)
B0 magnetic field strength
L1, L2 first and second order slip factors along axial direction (m)
L3, L4 first and second order slip factors along swirl direction (m)
Gr Grashof number
Re Reynolds number
A∗ space dependent parameter
B∗ temperature dependent parameter
Pr Prandtl number
λ mixed convection parameter
ε spin parameter
M magnetic parameter
Cf skin friction coefficient
γ1, γ2 first and second order slip parameters along axial direction
γ3, γ4 first and second order slip parameters along swirl direction
Nu Nusselt number
ϕ volume fraction of nanomaterial

Suffixes
nf nanofluid
f base fluid
s solid nanoparticle
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