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ARTICLE INFO ABSTRACT
Keywords: The aim of the present study is to numerically investigate the non-similar flow and heat transfer in
Thermal analysis a dissipative Eyring-Powell fluid (EPF) over a stretching surface. A constant magnetic field is

Numerical simulation
Eyring Powell fluid
Non-similar solutions

applied perpendicular to the stretched surface to explore the impact of the Lorentz force. Both
viscous and magnetic dissipation are considered to comprehensively examine their effects on heat
Overlapping grid-based spectral collocation transfer. The problem in hand does not admit self-similar solutions as the non-Newtonian fluid
scheme parameter varies with the spatial variable along the stream-wise direction. Consequently, the set
Viscous dissipation of nonlinear partial differential equations, modeling the flow problem is nondimensionalized
primarily by employing a pseudo-similarity variable and stream-wise coordinate. The non-
dimensional set of nonlinear partial differential equations is solved by a newly developed and
efficient “overlapping multi-domain bivariate spectral local linearization method (OMD-BSLLM)”.
The current study includes residual error analysis and convergence tests to demonstrate the ac-
curacy of the numerical method applied to the current mathematical model. Graphs show fluid
flow and heat transfer results for different flow parameters, while tables display skin friction and
Nusselt number values. The results indicate that the non-Newtonian fluid parameter enhances
both the velocity profile and temperature distribution. The fluid decelerates with increasing the
dimensionless stream wise coordinate and Hartmann number. Viscous dissipation and dimen-
sionless stream-wise coordinate enhances the temperature profile.

1. Introduction

Estimation of heat transfer rates and shear stress in flows of non-Newtonian fluids are of considerable practical importance across
diverse engineering and industrial sectors. Non-Newtonian fluids, characterized by their deviation from Newton’s law of viscosity, that
is, the principal feature exhibited by non-Newtonian fluids pertains to the non-linear correlation observed between shear stress and
shear rate. Non-Newtonian fluids are categorized by their shear rate response, encompassing shear-thinning and shear-thickening
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Fig. 1. Flow configuration.

fluids, as well as viscoelastic fluids. Some exhibit time-dependent behavior, such as thixotropic or rheopectic characteristics, while
others are classified by stress dependency, with yield stress fluids necessitating a threshold stress for flow initiation. Fundamental
challenge in the theoretical exploration of non-Newtonian fluid mechanics and the precise interpretation of experimental observations
stems from the lack of a universal relationship between the stress and the deformation tensor applicable to all fluids [1-4]. Conse-
quently, different models of non-Newtonian fluid have been established with the aim of capturing the diverse characteristics of these
fluids and providing more accurate descriptions of their behavior under various flow conditions and applications [5-13].

In polymer industries, fluids range from simple Newtonian liquids to complex non-Newtonian fluids with shear-thinning, shear-
thickening, or viscoelastic behavior. The EPF model [14] relies on the principles of the kinetic theory of liquids rather than on
empirical formulas. This approach involves considering the molecular dynamics and interactions within the fluid, incorporating
factors such as molecular structure, activation energy, and transition state theory. Several factors like melt viscosity, shear rate, and
residence time, impacting the quality and properties of the final polymer products. The Eyring-Powell fluid model demonstrates
notable accuracy and consistency in calculating the fluid time scale across various polymer concentrations [15,16]. Javed et al. [17]
employed the Keller box method to numerically investigate the locally similar solution of Eyring-Powell fluid. Hayat et al. [18]
analyzed the flow over a flat surface moving in a parallel free stream of Eyring—Powell fluid. Series solutions of locally similar
equations are constructed via homotopy analysis method. Qasim [19] studied the import of Soret and Dufour effect on the Blasius flow
over a flat plate subject to convective boundary conditions. Locally similar solutions are computed using shooting method. Farooq et al.
[20] performed the entropy production analysis of Eyring—Powell blood-based fluid driven by a stretching surface. Rahimi et al. [21]
used the collocation method in the computation arising in the flow of Eyring-Powell fluid over a linearly stretched sheet. Ibrahim and
Lamesse [22] examined the magnetohydrodynamic flow of the Eyring-Powell nanofluid under passive control of nanoparticles above a
convectively heated stretching surface. Numerical simulations of the coupled locally similar equations are performed using finite
element method. Vafai et al. [23] discussed the impact of thermal radiation, Soret and Dufour effects on the flow of electrically
conducting Powell-Eyring fluid induced by a stretching sheet. Ambreen et al. [24] discussed the magnetohydrodynamics of
Powell-Eyring fluid and heat transfer characteristics by utilizing the Cattaneo—Christov heat flux over a curved stretching surface.

Some attempts have been made to attain self-similar solutions by imposing restrictions on the surface velocity and this is only
possible for a particular choice of free stream and surface velocity. Jalil at al. [25] transformed the governing equations into
self-similar ordinary differential equations by employing invariant group of transformations. They reported that the resulting equa-
tions are self-similar in nature for special type of non-linear free stream velocity and the surface temperature. In the above studies on
the boundary layer flows, Eyring -Powell fluid parameter is based on the length scale and containing a spatial coordinate after
employing the transformations and the equations are considered as locally similar. Self-similar equations for the Blasius flow of
Eyring—-Powell fluid are derived by Avramenko et al. [26].

In the articles [17-22], the transformations applied to the governing partial differential equations (PDEs) do not entirely simplify
them to ordinary differential equations (ODEs). The stream-wise coordinate remains present in the non-Newtonian fluid parameter.
Therefore, considering these equations as ordinary differential equations (ODEs), independent of the stream-wise coordinate, is
fundamentally flawed. In fact, under such circumstances, the typical similarity transformations fail to operate effectively, and the
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Table 1
Transformations and partial derivatives utilized in Egs. (2)-(5).
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Transformations:

Partial derivatives utilized in momentum equation Partial derivatives utilized in the energy equation
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treatment of these problems as locally similar leads to significant errors. It is noteworthy to mention that this mistake has been
identified by Pantokratoras [27] and now it is being corrected by computation of non-similar solutions [28-36]. In non-similar
equations, the dimensionless stream function and temperature display dependence on the stream wise coordinate, alongside their
common dependence on the similarity variable [37].

Non-similar equations are the non-linear PDEs. Researchers employed different methodologies to compute the numerical solutions
of these equations. Local non similar method (LNS) proposed by Sparrow et al. [38] has been widely employed to tackle these
problems. In this procedure, non-similar equations are further transformed into ODE:s at different levels of truncations. Afridi et al. [39]
observed that the relative percentage error is significantly higher between the 1% and 2" Jevels of truncation compared to the 2" and
3™ Jevels. Only, few attempts have been made to address the non-similar partial differential equations without converting them into
ordinary differential equations. [40-42].

In this article, the magnetohydrodynamic flow of an Eyring—Powell fluid over a linearly stretched surface is investigated in the
presence of Joule and viscous dissipation. New transformations are introduced to convert the dimensional PDEs to non-similar
dimensionless PDEs. OMD-BSLLM technique [43-45] is implemented to compute the numerical solution of these non-similar
equations.

2. Development of the problem

Consideration is given to the steady incompressible dissipative flow of an EPF over a stretching sheet. A two-dimensional model is
utilized, employing rectangular Cartesian coordinates (x,y), here x and y represent the coordinates parallel and normal to the stretched
surface, respectively. Fig. 1 illustrates the physical model along with the coordinate system for this scenario. Additionally, a magnetic
field of magnitude Hy is imposed perpendicular to the stretched surface. The velocity and temperature of the sheet are respectively
defined as u; = sox and T, = T, + Tox?. The ambient temperature of the fluid is indicated by T., whereas, so and T, represent

dimensional constant with dimensions [time] * and [W} respectively. Boundary layer approximations are made, including the

consideration of viscous dissipation in the energy equation, leading to the formulation of the fundamental equations.
To address this scenario, the relevant balance laws as outlined in literature [16-20] are considered.

ou" o
u*al*—&-v*a—u**i (va—lf—kla—w——l (6u*‘)3> —G—H(Z’u* 2)
ox dy dy\ dy cppdy 6c3pp\dy P
0T 0T ;T 1 ) ou 1 foun\*
o TV pcp(&y2)+*<"H“ *(’” ﬁ)(@) 6%(@) > ®
u' u = SpX, .
T =T = T;+T3x2,}aty07 @

The system of PDEs (2) and (3), along with BCs (4) and (5), does not conform to a self-similar form through the typical similarity
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Table 2
Dimensionless flow parameters with fixed and range of values.
Physical flow Parameters Symbols with Expressions Fixed Values Range of Values
Prandtl Number Pr — CpH 2.0 Pr =2.0,5.0,7.0,10.0
k
Eckert Number E s 0.5 Ec =0,0.2,0.4,0.6
c=—2
Ty
Hartmann Number 7 oBZ 1.0 H, =0.0,0.5,1.0,1.5
™ sop
Fluid Parameter F 1 0.5 4 =1.0,3.0,5.0,8.0
" pprc
Dimensionless stream-wise coordinate / non-Newtonian fluid Parameter. c px3sg 0.5 ¢ =0.0,1.0,2.0,3.0
="

. . T'—T; .. . . . . .
transformations. i.e. {‘P(n) =x\/5ov8(n),n= y\/% ,T(n) = T } and this is because dimensional streamwise coordinate(x)remains

present within the resulting system (more explicitly one of the non-Newtonian parameters is not free from x), leading to the conclusion
that self-similar solution of the governing system does not exist. Consequently, adjustments to these transformations are necessary to
incorporate the explicit dependence of ¥ and T on dimensionless streamwise coordinate ¢ in the following manner.

3.2 T —T
{q::sto“vgm,é)@:’%w:.‘Y\/% T8 =0 } N

To achieve dimensionless form of a system of PDEs, various mathematical transformations and manipulations are applied to the
momentum and energy equations along with their respective boundary conditions, as outlined in Table 1.
Accordingly, Egs. (2)-(5) undergo these transformations and resulting in the subsequent system.
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T(7,6)=0 J e

The dimensionless parameters appearing in the above system are defined in Table 2. The non-dimensional version of skin friction
coefficient [Cy|and Nusselt number [N,,] are given below

Pgn.e) 1.,(dgn. o)\’
VReCr = (1+2) Py 7615( o )

amn
N 9T(n,&)

\% Rex B 671 n=0

3. Solution methodology
This section delves into the detailed implementation of OMD-BSLLM on the non-linear system of Egs. (7)-(10). It is worth

mentioning that in the present study, the non-Newtonian fluid parameter ¢ is playing the role of the time variable in MD-BSLLM [46]
and OMD-BSLLM [43-45]. The numerical approach consists of five fundamental steps. First, linearization is achieved through the local
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Fig. 2. Decomposing the £ — domain into non-overlapping multiple sub-domains.

linearization method (LLM). Next, the space computational domains in £ — and 5 — directions are divided into multiple intervals that
are non-overlapping and overlapping, respectively. Following that, the unknown functions and their continuous derivatives are
approximated using bivariate Lagrange interpolating polynomials. Lastly, the linearized iterative scheme is solved using the spectral
collocation method (SCM), employing Chebyshev-Gauss-Lobatto (CGL) points as collocation points. Applying the LLM algorithm to
simplify the transport Egs. (7) and (8) results in the following system of linear equations:

N éb+1

g 0g: 0 (og:
+ﬂ1r g+l +ﬂZ,r g+1 +ﬂs.rngrl +ﬂ4.r%( g+1>

ﬁor 7’]2 671 aé

a T-
+/}5.r< gaél> :ﬁﬁm

(12)

02T 1 JT, 1 T, 1
Yo,rTr;Jr Yir a;r + 7o, Tri1 + 73, arg ) =Yar (13)

where the variable coefficients, which are assumed to be derived from the preceding iteration (r), are defined as
1 (0% . g g 0g,
for = (14 4) M(aﬂz) Pr=g - 155 O 2%

g <6gr) P’g 98-
By, = —H* — 22 =28 55 ) Bar =5z Par = =2
B, an ¢ o s, on? Pa, & %

008, T (%) 5.0 0 0& P %8
ﬁS.r o zvﬁﬁr_ ranz (an 2 6;1 0?] +2§ 6772 05 . (14)

s

g (P8 1 ogr g
aﬂg(aﬂ2> o = pplir = g'+2§a§ 7’2;——_2E»Y —25();1,

,7H2Ec<(j§;> Ec(‘j;gz’>2<(1 ),,/15<62g,) )

It is worth noting that the superscript (r +1) represents the current iteration level. Following this, it is assumed that £ belongs to the
set ', where I' = [0, &] represents the domain of approximation in the & — direction. Subsequently, I is divided into q equal and small
non-overlapping sub-intervals, which are designated as follows:

= [éa—lvéaLéa—l <E,0=¢6 <& <. < éq—l < fq =¢a=1,23,4,..,q. (15)

The problem is addressed within each sub-interval to ensure compliance with the pertinent boundary conditions. The solution
attained by solving the transport equations at ¢ = 0 serves as an initial condition within the 1%first sub-interval I';. Subsequently, for
the next sub-intervals I';(a = 2,3,4,5,...,q), the solution obtained at the final grid point of the preceding sub-interval I',_; is utilized as
an initial condition for the succeeding sub-interval I[',. Fig. 2 illustrates the decomposition of the computational domain in the ¢ —
direction into gsub-intervals, wheref® (w=0,1,2,3,...,N;,a= 1,2,3,4, ..., q) represents (N; +1) C-G-L collocation grid points within
every sub-interval. To apply the SCM method inside the range [— 1,1], we utilize the subsequent linear transformation:

1 ~ 1
fzi(éaffa—l)‘f+§(§a7§a—l)a (16)
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Fig. 3. Decomposing the n — domain into overlapping multiple sub-domains.

to convert the physical variable & € [£,_1,&,] in the a'sub-interval into the collocation variable e [—1,1]. The domain inside every
sub-interval is then discretized via (Ng +1) CGL collocation points, which are defined in [40-42]

~ N: jﬂ
{&},-, = cos (E) 17

Conversely, the physical domain in the 7 direction is first truncated into the domain K = [0, ], where 7, is selected to adequately
fulfill the far-field boundary conditions. Then the domain K is partitioned into p overlapping sub-intervals, denoted as follows:

Kb: [ng7nllilﬂ}!b:172737"'7p' (18)

Every sub-interval in direction of 7 shares a uniform lengthl = —— "= and every sub-domain employs the equal
p+5(1-p) (1—cos <NL> )

number of

CGL collocation points (N, + 1). Fig. 3 depicts the division of the # — domain into poverlapping sub-intervals. Here, the final two
grid points of interval K;, align with the initial two grid points of the subsequent sub-interval, denoted by K, ; For detailed formulations
describing the lengths of sub-interval L, the reader is advised to consult the publications of [46,47].

Analogous to the conversion of the ¢ — domain, the following linear mapping

2, g

n 9
m, = M, — 1

7= (19)
are utilized in the transformation of the physical variabley € [ng, n}b\,’]} onto the collocation variable i € [—1, 1] The collocation points in

the K, interval is given by
~ 1N, in
{mi}idy = cos (17) (20

To differentiate the solutions across different sub-domains in the & — direction, we utilize the notations g% (5, &) and T®(y, &),
wherea = 1,2, 3, ..., g, to represent the solutions within the ath sub-interval. It is important to highlight that equations are solved
separately within every sub-interval along the £ — direction, whereas solutions are simultaneously evaluated across overlapping sub-
intervals along the n — direction. Therefore, the linearized LLM scheme evolves to

Fgh  , et 05 @ 9 (98 o8,

Por 0'7; +Pir an; + Par &';r + /))S,rngrl + /341% ( ag ) + ﬂS,r ( ag > = /36<ra @D
0*T? aT, . oT',

Yor 67’];1 + Yir 0’;1 + 72.rTr(+)1 + yS.r< agl) =Var: (22)

In the initial interval [&,,,], the solutions g (y, £) and TV (5, £) are determined under the initial conditions g)(0, ¢) and TV (0,¢&).
Subsequently, in the remaining sub-intervals I';(a = 2,3,4,5,...,q), the continuity conditions are enforced in the execution of the OMD-
BSLLM scheme across the interval [£,_;,&,]. This process is repeated to generate the series of solutions g (7, £) andT'@ (5,£), wherea =1,
2,3,...,p. During the solution process, the specified type of bivariate Lagrange interpolation polynomial that can be expressed in the
following manner:
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Fig. 4. Sparsity pattern of the matrix D for the OMD-BSLLM and MD-BSLLM schemes.
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N, N:

U ~G &) => > Gy, &)Le(MLi(&), (23)

k=0 =0

is employed in the approximation of the solution of g(r, £) within every sub-interval in ¢ — direction. The estimation of the first-order

spatial derivative matrix w.r.t the variable  is performed via (ﬁi,%), forj=0,1,2,3,...,N;, within in each bth sub-interval as follows:

Ny N Ny

o &) =Y G, &)L(M(E) = ; G (1, &)Lx(7) = DG, (24)

where D = 2D, and D represents the fundamental first-order Chebyshev differential matrix (CDM) with dimensions (N, +1) x (N, +1)
[47-49]. On the other hand, the matrix-vector denoted by G; 9 with matrix size (N, +1) x 1 is given by

67 = [§° (16,87 (1£). .8 (15.6)] b =1,2.3,..p, 25)

where t denotes the transpose operation on matrices. The norder derivative matrices concerning the spatial variable 5 can be obtained
through matrix multiplication as

I'g? o n (a
S (1.8) = DGy (26)

Subsequently, the estimation of the first order derivative matrix w.r.t £ is carried out via (ﬁi,gj), forj =0,1,2,3,...,&, within in each a®

sub-interval as follows:

(a)

g - SPrC
N
o¢ — &1 =0

where d;; = d;1(j,1 = 0,1,2,3,4,...,N;), and the matrix d;; represents the fundamental first-order CDM with dimensions(N; +1)

2
Ea—Ea1
X (N5 +1) [47-49]. The updated matrix-vector @J@ of size (M +1) x 1 takes the form

EJ@ = [g(a) (’7075])7g(a) ('h-fj)v ----,g(a) (’]Mvéj)}[va =1,2.3,..,q, (28)

where M = N, + (N, + 1) x (p — 1) represents all collocation points used across the entire domain in the #direction. The other un-
known function T (1, ) and the derivative matrices corresponding to it are approximated in the same way. In the overlapping multi-
domain approach, the spatial Chebyshev differential matrix D w.r.t the variable # has the matrix size(M + 1) x (M + 1). Because of the

overlapping scheme, the 1% and last two grid points in the (b + 1)th and b™ sub-intervals coincide, being treated as one grid point. As a
result, Consequently, the rows associated with duplicated mesh points are excluded while building the Chebyshev derivative matrix D,
following the structure outlined in [43-47]. In the structure, the non-zero elements are represented by colored pixels and the zero
elements are left blank. To visualize the structure of the matrix D, the ‘spy’ function is used in MATLAB to plot the sparsity pattern of
the Chebyshev differentiation matrix D as seen in Fig. 4. From the figure, it is noted that the differentiation matrix resulting from the
overlapping grid-based spectral collocation method is less dense or sparse as it is characterized by many zero elements. Thus, this
Chebyshev derivative matrix leads to significant computational savings in operations such as matrix-vector multiplication and solving
linear systems. This is because operations involving zero elements can often be skipped, minimizing the number of arithmetic oper-
ations required. This sparse matrix will also require less memory to store when compared to dense matrices from the MD-BSLLM
approach which stores every element explicitly. Sparse matrices play a crucial role in applications where memory is limited such
as in numerical modeling. The sparsity pattern can affect various properties of a matrix, such as its condition number. Thus, under-
standing the sparsity pattern can help in analyzing the condition number and designing appropriate numerical methods. More details
on condition numbers will be discussed in the results and discussion section.

The utilization of SCM involves substituting continuous derivatives with discrete ones and incorporating initial conditions. Thus,
we have the following matrix equations

N:.
—(@) - )
(Bo,D° + p1,D* + 5, D° + 3,) G, + P, Z 4, DG\, + s, Z DG, = R, (29)
j=0
(a) e
(70 rD + 11, rD + Y2, r) T + Y3r E dll ) r+1 = R(2a27 (30)

where the vectors G and T are of size (M + 1), and
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Fig. 5. Convergence error for the OMD-BSLLM and MD-BSLLM schemes.
=(a) A@
R(lar)— = ﬂﬁ.r - ﬁmrdl'-,NgDGNg— - ﬂs,rdi»NgGNé (31)
@)
R(Zar)' =Y4r — 73,rdi-,N5 TN;

Similarly, the corresponding boundary conditions are also evaluated at the collocation points. Eq. (28) can be expressed in matrix
form using the square matrix with a size of N;(M + 1) x N;(M + 1) :

~l(a) (a)
G R
Ao Ao, Aoz Agna 721) 1,0
Ao A1 A1z - Ay G, _ R(lai 32)
Av. 10 Aw. 10 An 10 -~ Awv inoa||_q :
N:-10 An-10 An-10 N;—1.N:—1 G;Z) ) R(lt,lz)vr

where A; = o, D? + f1,D* + o, D + 3,1+ B, ,diiD + s .di;l when i = j, Ai; = 4, di;D + Bs,d; ;1 when i # jand the identity matrix I
has dimension (M + 1) x (M + 1).The other matrix Eq. (29) can be can be represented as a matrix system analogous to (31). Boundary
constraints are integrated into the leading diagonal sub-blocks of the matrix systems, creating a new set of linear algebraic equations.
These equations are solved iteratively, starting with initial approximations gy(1) = 1 — e "and Ty(n) = e™", to obtain the desired
solutions.
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Table 3

Residual error values and condition numbers for OMD-BLLM and MD-BLLM.
P N, || Res(g) [l || Res(T) ||oo Cond (A) Cond (B) CPU Time (s)
1 100 1.75581e-09 3.96368e-11 1.19692e+09 9.35557e+05 3.02010
2 50 9.99671e-10 7.14506e-12 1.27780e+08 2.67797e+05 2.38297
4 25 1.33251e-10 3.64265e-12 1.45653e+07 6.85595e+04 2.13766
5 20 6.74823e-11 2.76306e-13 7.31624e+06 4.55779e+04 2.11581
10 10 1.14315e-11 2.29286e-13 8.68307e+05 1.63562e+04 1.94834
20 5 2.07924e-12 1.30920e-13 9.91696e+04 9.71883e+03 1.31999
25 4 1.29083e-12 1.03423e-13 7.38454e+04 8.82872e+03 1.17933
50 2 1.58441e-13 1.11774e-13 1.40252e+04 6.23908e+03 0.59942

4. Results and discussion

Numerical outcomes achieved through OMD-BSLLM are presented in this section of the study. The numerical findings about the
flow characteristics, heat transfer, Nusselt number and skin friction coefficient for different key physical parameters are portrayed in
figures and tables. By conducting simulations, we have adjusted the parametric values related to the physical flow parameters, as
outlined in Table 2. These parameters remain constant or vary according to Table 2 unless explicitly stated otherwise in the
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Table 4
Numerical values of \/Re,Cp against various combinations of flow parameters when Pr = 2 and Ec =
0.5.
2 Hp ¢ (Re2®Cy,)
1 -1.9753439
3 1.0 0.5 -2.8026410
5 -3.4412860
8 -4.2250578
0.0 -1.2170156
0.5 0.5 0.5 -1.3590074
1.0 -1.7131748
1.5 -2.1714952
0.5 -1.7131748
0.5 1.0 1.0 -1.6924797
2.0 -1.6415499
3.0 -0.3210619
Table 5
. Nux . . L
Numerical values of against various combinations of flow parameters
VRey
y Hp I3 Pr Ec Nux
VRex
1 1.1454572
3 1.0 0.5 2.0 0.5 1.0799856
5 1.0329824
8 0.9827384
0.0 1.7358300
0.5 0.5 0.5 2.0 0.5 1.5770014
1.0 1.1638882
2.0 0.5989936
1 0.5 1.1638882
3 1.0 1.0 2.0 0.5 1.1605875
5 2.0 1.1511849
8 3.0 1.1428500
1 2.0 1.1638882
3 1.0 0.5 5.0 0.5 1.7182215
5 7.0 1.9608388
8 10 2.2466164
1 0.0 1.9526842
3 1.0 0.5 2.0 0.2 1.6371658
5 0.4 1.3216474
8 0.6 1.0061291

accompanying figures and tables.

The changes in solution errors for the numerical computation of g(#, £) and T(1, )against the iterations are depicted in Fig. 5 for
both MD-BSLLM [50] (without overlapping) and OMD-BSLLM schemes. The consistent decrease in solution-based error infinity norms
as the number of iterations escalate signifies that the numerical scheme is converging. Complete convergence is achieved when the
convergence plots begin to level off or stabilize. As shown in Fig. 5, full convergence occurs after roughly five iterations for all so-
lutions, with solution errors approaching 101! for the MD-BSLLM and 10~'4 for OMD-BSLLM algorithm. The small errors associated
with the OMD-BSLLM algorithm confirms its superior accuracy.

From Fig. 6, the residual error infinity norms of g(n, £)and T(n, £)are graphed are graphed against the dimensionless streamwise
coordinate (non-Newtonian fluid parameter) £. It is evident that the residual errors are lesser in the OMD-BSLLM compared to the MD-
BSLLM, indicating that the overlapping grid-based SCM offers higher accuracy than the MD-BSLLM. Further, it is also noted that
residual errors are almost uniform across the non-Newtonian fluid parameter ¢ in the OMD-BSLLM scheme and these errors
approximate the true solution to about 1073 throughout the ¢ — direction. This observation confirms that even for high values of & the
OMD-BSLLM scheme produces acceptable errors that ensures reasonably superior accuracy for practical use. This is an advantage of
the OMD-BSLLM over the MD-BSLLM whose accuracy deteriorates rapidly when & becomes large. The deterioration in the accuracy of
the MD-BSLLM is caused by factors such as round-off errors and stability issues. This observation suggests that SCM with overlapping
grids effectively generates superior accurate and stable results, even when dealing with large parameter values.

Table 3 illustrate that the small residual errors correspond to the OMD-BSLLM scheme, which basically justifies the superior ac-
curacy of the overlapping grid-based spectral collocation scheme. Also, the coefficient matrices resulting through the implementation
of overlapping grid idea are clearly associated with low condition numbers, which indicate that these matrices are well-conditioned
and numerically stable. Since these coefficient matrices are well-conditioned, solving the linear systems or computing the inverses is
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Fig. 8. Impact of Hartman number H,, on the velocity distribution.

less sensitive to errors. Actually, inverting well-conditioned matrices is a stable operation and the inverse of such matrices can be
computed accurately. It is also seen that the well-conditioned matrices contribute to less computational time since numerical algo-
rithms converge faster and are more stable when applied to well-conditioned matrices. This stability ensures that the algorithm does
not amplify errors during computation, leading to faster, accurate and more reliable results. The well-conditioned nature of the co-
efficient matrices makes the overlapping grid-based spectral collocation scheme to be computationally efficient, more accurate, and it
is less likely to be derailed by instabilities. These properties can be remarkably improved by maximizing the number of overlapping
sub-intervals used while minimizing the number of collocation points per sub-interval.

Tables 4 and 5 illustrate the impact of physical parameters on the significant engineering quantities Table 3 validates that the
decrease in surface drag force is associated with an increase in fluid parameter 1 and Hartmann number H,,, while it is enhanced with
dimensionless stream-wise coordinates £. According to Table 5, the enhancement in the rate of heat transfer at the surface is observed
with an increase in Pr, but is suppressed by the growth of Hp, 4, &, and Ec. Additionally, these values are documented to establish
benchmark values for potential research endeavors in this field.

The findings regarding fluid parameter A impact on the velocity profile g, (n,£)are depicted in Fig. 7. The increase in velocity profile
is noted as the fluid parameter increases. In physical terms, the fluid parameter 4 has an inverse relationship with the fluid’s viscosity.
When the fluid parameter increases, it implies a decline in the fluid’s viscosity, which in turn reduces the internal resistance. As a
consequence, the individual layers of the fluid can move more freely, leading to a noticeable increase in velocity profile. Fig. 8 shows a
visual illustration of how the Hartman number on velocity profile. The outcomes indicates that the velocity curves decline with
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incrementing the inputs of Hartman number. The reasoning behind this decline velocity profile is, when the magnetic field applied is
intensified (increasing Hartman number), the Lorentz force, representing the force arising from the interplay between the magnetic
field and the fluid, exerts its influence on the fluid. This force, perpendicular to both the magnetic field and the fluid velocity, generates
a resistance force against the direction of flow. As the Hartman number grows, this force escalates, consequently resulting in a
reduction in fluid velocity. In Fig. 9, the prediction of the velocity profile g, (1, £) is presented in relation to the dimensionless variable
nfor the dimensionless stream-wise coordinate £. The graphical representation illustrates a slight decrease in the velocity profile as the
dimensionless stream-wise coordinate increases.

Fig. 10 displays how the increment in the fluid parameter 1 affects the heat transfer mechanism. The findings disclose that the
temperature curves and temperature boundary layer improve by incrementing the inputs of fluid parameter. The Hartman number has
significant influence on the temperature distribution as shown in Fig. 11. The findings indicate that the temperature curves improve
with increasing values of the Hartmann number. Physically, the rise in temperature within the boundary layer flow as the Hartmann
number upsurges is due to Joule heating phenomenon, this leads to the dissipation of energy in the form of heat, causing an increase in
the temperature of the fluid. Fig. 12 describes the influence of dimensionless stream-wise coordinate on temperature profile. The plot
spectacles that the increasing inputs of stream-wise coordinate slightly rise the temperature curves. Fig. 13 shows the significance of
the Prandtl number on the temperature distribution. An increase in the Prandtl number corresponds to a decrease in the thermal
diffusivity of the fluid, therefore lower thermal diffusivity suppresses the temperature curves. The Eckert number has major influence
on temperature profile and to reveal this impact, we have plotted Fig. 14. Form this plot it is concluded that the Eckert number is
responsible for amplification in the temperature curve. Physically, the temperature rise in the boundary layer flow, as the Eckert
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number increases, is a result of the conversion of the fluid’s kinetic energy into thermal energy. As the Eckert number rises, the fluid’s
kinetic energy becomes more prominent, resulting in a temperature increase caused by the dissipation of the kinetic energy.

5. Concluding remarks

The non-similar boundary layer flow of the Eyring—Powell fluid, accompanied by thermal analysis under the influence of a uniform
magnetic field and viscous dissipation, is examined. The absence of self-similar solutions arises due to the dependence of the fluid
parameter on the streamwise spatial coordinate x. Through the incorporation of suitable dimensionless transformations into the
governing model, a system of dimensionless and highly nonlinear PDEs is derived. Utilizing the OMD-BSLLM, numerical outcomes are
obtained. The sparse matrix obtained through overlapping grid approach can offer computational and memory advantages, providing
insights into the underlying structure of a system or problem, and influence algorithm design and matrix properties such as the
condition number. The well-conditioned nature of the coefficient matrices with low condition numbers leads to computationally
efficient, more stable, accurate and reliable numerical algorithms including the overlapping grid-based spectral collocation method.
The subsequent findings from the investigation are emphasized:

e Equations that govern the flow of Eyring—Powell fluid induced by a linear stretching sheet are not self-similar.
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e Incrementing in fluid parameter 4 and Hartmann number H,, show decrement in skin friction, while inverse results are observed
with increasing dimensionless stream-wise coordinate &.

e The increment in fluid parameter 4, Hartmann number H,,, dimensionless stream-wise coordinate ¢ and Eckert number Ec produce
enhancement in Nusselt number, whereas inverse results are found with increasing Prandtl number Pr.

e The temperature curves exhibit enhancement as the dimensionless fluid parameter 4, stream-wise coordinate &, Eckert number Ec,
and Hartmann number H,, increase. Conversely, a decrease in the temperature curve is observed as the values of Prandtl number Pr

improve.

o Increment in fluid parameter, accelerates the fluid whereas deceleration is observed with rising values of Hartmann number and
dimensionless stream-wise coordinate.
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