REVIEW ARTICLE | DECEMBER 02 2024

A review on magnetic permeability in heat and fluid flow characteristics: Applications in magnetized shielding

Hossam A. Nabwey ■ [0]; Muhammad Ashraf [0]; A. M. Rashad [0]; Ali J. Chamkha [0]

AIP Advances 14, 120701 (2024) https://doi.org/10.1063/5.0238462

A review on magnetic permeability in heat and fluid flow characteristics: Applications in magnetized shielding

Cite as: AIP Advances 14, 120701 (2024); doi: 10.1063/5.0238462 Submitted: 11 September 2024 · Accepted: 8 November 2024 · **Published Online: 2 December 2024**

Hossam A. Nabwey, 1.2.a) D Muhammad Ashraf, D A. M. Rashad, D and Ali J. Chamkha D

AFFILIATIONS

- 1 Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- ²Department of Basic Engineering Science, Faculty of Engineering, Menoufia University, Shebin El-Kom 32511, Egypt
- ³Department of Mathematics, University of Sargodha, Sargodha 10400, Pakistan
- Department of Mathematics, Faculty of Science, Aswan University, Aswan, Egypt
- Faculty of Engineering, Kuwait College of Science and Technology, Doha District 35004, Kuwait

a) Author to whom correspondence should be addressed: h.mohamed@psau.edu.sa and eng_hossam21@yahoo.com

ABSTRACT

Magnetic permeability as a material property has a significant impact on the characteristics of a heated surface where induction heating or magneto-thermal systems are involved. In the heat and fluid flow mechanism where heat induction is used, magnetic permeability has a significant and crucial impact. Materials-like ferromagnetic materials with high magnetic permeability enhance the eddy current formation and can concentrate the magnetic field during the processes. These eddy currents lead to Joule heating in terms of electric current induced within the conductor by a changing magnetic field. Magnetic permeability also impacts the temperature profile within the material. Materials with extraordinary permeability due to the concentration of magnetic field can cause localized heating. The variable material properties in the presence of localized heating lead to non-uniform temperature distribution throughout the medium. In the magnetohydrodynamics heat and fluid flow region in the presence of magnetic permeability, some materials perform magnetostrictive impacts; therefore, they change shape or size under the influence of a magnetic field. The role of magnetic permeability along the heated surface is multifaceted in the system where an electromagnetic field is involved and affects how heat is generated, distributed, and dissipated. It is pertinent to mention that in the system where the electromagnetic field is involved, the magnetic permeability directly impacts the efficiency and uniform heating. Therefore, the understanding and controlling of magnetic permeability is important to design the systems that rely on exact thermal management, such as in magnetic shielding, magneto-thermal devices, and induction heating.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0238462

I. INTRODUCTION

Magnetic permeability is a fundamental property of materials that measures up to which extent the material can be magnetized and how it deals with a magnetic field. It estimates the tendency of a material to maintain the materialization of a magnetic field within the material. During the processes for higher magnetic permeability, the more easily a material can become magnetized. Particularly in the presence of a magnetic field, the magnetic permeability can play an important role in various characteristics of heat and fluid

flow processes. In moving fluids, Lorentz force is exerted by a magnetic field depending on the magnetic permeability of the fluid. Lorentz force can be used to control the thermal performance of the system for higher temperature. Therefore, the magnetic permeability is an important factor in the interaction between magnetic fields and heat and fluid flow mechanisms of the system under consideration. It impacts the characteristics of electrically conducting fluids and the efficiency of electromagnetic heating. Street et al.1 provide an overview of studies conducted to ascertain how variations in the magnetic field supplied to the sample affect its magnetic viscosity, with two types of variations in the field being examined. Timur² created a basic model of permeable medium by extending the applications of nuclear magnetic resonance technologies and analyzing the pulsed NMR data. The low temperature irregularity in the spontaneous magnetization is described by Muxworthy and McClelland.³ They examined the distinction between saturation and spontaneous magnetization close to the transition. Hydromagnetic convective heat transfer along permeable surfaces and porous mediums is discussed in Refs. 4-6. Comstock highlighted a few technological issues that can prevent the growth in areal density along with the magnetic material utilized in the applications. In the context of blowing and suction, Seddeek⁸ investigated the impact of both varying viscosity and magnetic field on non-Darcy forced convective flow across a flat surface with varying surface temperature in a permeable medium. It was discovered that as the rate of heat transmission dropped, the magnetic field enhanced wall skin friction. The mechanism of MHD heat and fluid flow from permeable different shapes with the inclusion of heat source/sink for thermophoresis chemical reaction is studied in Refs. 9-15. Ashraf et al. 16,17 studied the impacts of magneto-hydrodynamics and radiation on the buoyancy driven convective flow of conductive fluid across a vertically magnetized porous plate. They observed the impact of various physical parameters on the thermal transmission rate, current density, thermal profile, and skin friction coefficient along with fluid flow. The mechanism of viscous dissipation, ohmic heating, and conduction radiation in the presence of variable magnetic permeability is highlighted in Refs. 18-22. In consideration of the homogeneous chemical reaction, Sharma et al.23 presented a magneto-hydrodynamics free convective flow of conductive micropolar fluid across a radiating surface along permeable media. The numerical and analytical solutions to the issues of magnetic permeability in the presence of a magnetic field are studied in Refs. 24–27. Taking into account the impact of ferro-magneto hydrodynamics, Kandelousi²⁸ considered the ferro-fluid flow and thermal transmission in the context of an externally applied changing magnetic field. The equations governing the system were solved using the control volume-based finite element technique. Free convective heat transfers along a vertical stretching sheet, magnetized vertical plate, and porous wedge for variable magnetic permeability are predicted in

Chen et al.35 demonstrated electromagnets with high permeability in multi-pole magnetic tweezers to quickly activate magnetic beads. Under the impact of squeeze velocity, Shah and Patel³⁶ investigated the influence of different and random permeable structures on the step bearing's performance when lubricated along with magnetic field. Selimli et al. 37 scrutinized the influence of the electromagnetic field on the thermophysical and hydrodynamic characteristics of magneto-viscous flow of fluid. The study of heat transfer for different thermophysical properties³⁸ has been studied in Refs. 39-42, numerically as well as analytically. In the presence of ferro-magnetohydrodynamics, the impact of a fluctuating magnetic field on forced convection thermal transmission in a semi annulus lid is explored by Sheikholeslami et al.⁴³ In permeable media, Salawu and Dada⁴⁴ examined the heat radiation of conductive fluid along a continually stretched surface with varying thermal conductivity and viscosity. In magnetic fluid, Afifah et al. 45 discussed the steadiness and accumulation of particles, emphasizing its special properties, including magneto-thermal convection and impacts of magnetic viscosity. Taking into account variable fluid's thermal conductivity and viscosity, a numerical solution for buoyancy force flow over a vertically magnetized surface is presented by Muhammad *et al.*⁴⁶ They solved the equations governing the problem by utilizing the finite difference technique and examined the influence of various flow parameters on the transverse magnetic field, fluid flow, and thermal profiles. The case of magneto-nanofluid heat transfer for porous curved surfaces and permeable stretching/shrinking surfaces has been studied in Refs. 47 and 48.

Chen et al. 49 used an experimental methodology for the inductive analysis of a varying flux permanent magnetic machine as well as a magnet frozen permeability finite element approach. They also presented a method for tracking the current trajectory bias with zero start DC. Numerical prediction of nanofluid convective heat transfer mechanism along porous shape for magnetic permeability has been carried out in Refs. 50-58. Hatami et al.⁵⁹ employed a finite element procedure with a commercial package (Flex PDE) to investigate the influence of a varying magnetic field on the buoyancyinduced convective thermal transport of magnetite-water nanofluid. The influences of an electric field in a permeable enclosure under the impact of thermal radiation were predicted in Ref. 60. Taking into account magnetic field and suction (blowing), Chaudhary and Choudhary⁶¹ examined the impact of radiant heat and partially slip on the conductive fluid over stretching sheet. For the limited cases, they compared computational data for the non-magnetic model. The influence of magnetic field in half annulus cavity, heat sphere by means of obstacles, wavy channel, and permeable stretching surface has been analyzed in Refs. 62-67. Through experimentation, Cheng and Li⁶⁶ investigated the characteristics of ferro-fluid during natural convection heat transport while being subjected to a persistent magnetic field. Their study reveals that a decrease in cooling temperature ranged from 20 °C to -10 °C enhanced the performance and rate of thermal transmission for a 12 W heat load. Magnetohydrodynamics forced and free convective heat transfer around ellipse, porous inclined surface, and permeable stretching/shrinking sheet has been predicted in Refs. 68-72.

Contemplating the impact of magnetic heating, Khan et al.⁷³ analyzed the physical phenomena of natural convection nanoparticles along a sphere in the plume zone. The phenomenon of convective heat transfer for different classes of fluid for variable magnetic permeability along different complex geometries has been discussed in Refs. 74–80. Over a rotating surface, Shuaib et al.⁸¹ studied the time-independent slip flow along convective thermal transmission under the impact of varying magnetic field and physical characteristics. Their findings suggest that the slip factor effectively regulates the flow and thermal properties. The features of fluid flow and heat in the manifestation of an induced magnetic field have been analyzed in Refs. 82–84. In a permeable channel, Marzougui et al. 85,86 considered the influence of hydromagnetic on the formation of entropy in time-dependent Poiseuille-Rayleigh-Bénard flow of conductive fluid. Along the influence of Arrhenius kinetics and Lorentz forces, Zhang et al.87 considered the flow of nanoparticles over a nonlinear porous surface. Pishkar⁸⁸ and Almeshaal and Saha⁸⁹ explored the magnetic field's sway on the thermal transport enhancement and fluid flow properties. They presented the simulation's computational results regarding the various flow and contour parameters.

The impact of heat source and sink in the presence of an aligned magnetic field in terms of heat and fluid flow along an electrically conducting cone surrounded by a porous medium is given in Ref. 90. In an innovative heat transfer system, varying magnetic fields' impact on the contaminant behavior of magnetic nanoparticles examined was by Fan et al.⁹¹ Across a heated, non-conducting cylinder, Ullah et al. 92 tackled the consequence of hydromagnetics and low gravity on oscillatory buoyancy force conductive flow of fluid. Periodic scrutiny of convective heat transfers along cone entrenched in porous medium in Ref. 93 and second grade fluid flow using modified Fourier and Fick laws in Ref. 94 has been discussed, respectively. In a permeable medium, Ilyas and Ashraf et al. 95, presented the periodic nature of thermal transmission around a conductive cone. They determined the oscillatory behavior of heat transport, current density, and transient surface shearness. Considering the thermal and solutal slips, heat radiation, thermophoresis, and hydromagnetic effects, Nabwey et al.⁹⁷ discussed the simulation of reactive fluid transport in permeable media.

In the manifestation of magnetic flux and a catalyzed exothermic process, Ashraf et al. 98 explained the boundary layer behavior on the curved surface. It is noticed that the thermal profile rises sharply, whereas fluid flow and mass distribution steadily decline with the rise in the exothermic factor. Ullah et al. 99 analyze the impact of temperature dependent density and magnetic field numerically. Taking into account thermal radiation and magnetic field, Abbas et al.¹⁰⁰ demonstrated the low gravity's influence on thermal transport and fluid flow across a spherical surface placed in a permeable medium. Jalili¹⁰¹ studied the non-linear radiative heat transfer with magnetic field. Considering the impact of thermal and flow slip, MHD and thermal transmission along the uniformly magnetized surface are analyzed by Alharbi et al. 102 The effects of reduced gravity and magnetohydrodynamics are discussed along different complex shapes in Refs. 102-104. On the free convection flow, Zeb Khan et al. 105 revealed the combined impact of fluctuating porosity and adiabatic wall movement. With the help of isotherms and streamlines, the impact of various physical parameters is explained. The impact of variable magnetic permeability, round vertical thermally stratified jet, triangular cavity, and infinite vertical moving plate has been discussed in Refs. 67 and 106-112. Computational analysis of magnetohydrodynamics fluid flow and heat transmission behavior in permeable cavities and Jeffery slip fluid flow in permeable linearly stretching sheets is discussed in Refs. 113 and 114. The system of partial differential equations established the heat and fluid flow mechanism in the presence of magnetic permeability by following³⁰ and is given as below:

$$\frac{\partial \overline{u}}{\partial \overline{x}} + \frac{\partial \overline{v}}{\partial \overline{y}} = 0, \tag{1}$$

$$\frac{\partial \overline{u}}{\partial \tau} + \overline{u} \frac{\partial \overline{u}}{\partial \overline{x}} + \overline{v} \frac{\partial \overline{u}}{\partial \overline{y}} = \frac{\partial^2 \overline{u}}{\partial \overline{y}^2} + \xi \left(\overline{h}_x \frac{\partial \overline{h}_x}{\partial \overline{y}} + \overline{h}_y \frac{\partial \overline{h}_x}{\partial \overline{y}} \right) - \Omega(\overline{u}) + \lambda \overline{\theta}, \quad (2)$$

$$\frac{\partial \overline{h}_x}{\partial \overline{x}} + \frac{\partial \overline{h}_y}{\partial \overline{y}} = 0, \tag{3}$$

$$\frac{\partial \overline{h}_x}{\partial \tau} + \overline{u} \frac{\partial \overline{h}_x}{\partial \overline{x}} + \overline{v} \frac{\partial \overline{h}_x}{\partial \overline{y}} - \overline{h}_x \frac{\partial \overline{u}}{\partial \overline{x}} - \overline{h}_y \frac{\partial \overline{u}}{\partial \overline{y}} = v\sigma \frac{\partial}{\partial y} \left(\overline{\mu} \frac{\partial h_x}{\partial y} \right), \quad (4)$$

$$\frac{\partial \overline{\theta}}{\partial \tau} + \overline{u} \frac{\partial \overline{\theta}}{\partial \overline{x}} + \overline{v} \frac{\partial \overline{\theta}}{\partial \overline{y}} = \frac{1}{P_r} \frac{\partial^2 \overline{\theta}}{\partial \overline{y}^2}.$$
 (5)

The dimensionalized boundary conditions are

$$\overline{u} = \overline{v} = 0, \quad \overline{h}_y = 0, \quad \overline{h}_x = 1, \quad \overline{\theta} = 1 \quad at \quad \overline{y} = 0,$$

$$\overline{u} \to \overline{U}(\tau), \quad \overline{\theta} \to 0, \quad \overline{h}_x \to 0 \quad as \quad \overline{y} \to \infty.$$
(6)

Here, $\gamma = \overline{\mu}\sigma v$ is the magnetic Prandtl number, and $\overline{\mu}$ is variable magnetic permeability. In electromagnetically active materials, both magnetic and thermal properties play roles in the following way:

$$\overline{\mu}(T) = \overline{\mu}_{\infty} \left[1 + \alpha_1 \left(\frac{T - T_{\infty}}{T_w - T_{\infty}} \right) \right].$$

Here, \overline{u} and \overline{v} are the x and y components of velocity, \overline{h}_x and \overline{h}_y are the x and y components of magnetic field, Ω , λ , and σ are porous parameters, mixed convection parameters, magnetic and electrical conductivity, respectively.

The impact of magnetic permeability on different characteristics of heat and fluid flow mechanisms is given below.

A. Impact of magnetic permeability on thermal conductivity of the material

From the closed study of the literature and from the characteristics of both properties, that is, magnetic permeability and thermal conductivity of the material, it is found that there is no direct, intrinsic relationship between them in heat and fluid flow mechanisms. However, in some physical phenomena where these two properties are important, as a secondary impact, one property can directly affect the other. In composite materials, those used in electromagnetic shielding with thermal management capabilities are optimized through both properties. It is important to point out here that magnetic permeability and thermal conductance are normally independent properties. However, in some special cases, such as some advanced materials or for some specific applications, an understanding of how these characteristics interact in a particular way can be required. Therefore, the influence of magnetic permeability on thermal conductance is normally slight and indirect, but for some specific applications, it could be important.

B. Impact of magnetic permeability on magnetized shielding

Keeping in view the above-mentioned literature review, the magnetic permeability shows a significant role in the impactness of magnetized shielding to save the system from excessive heating. Magnetized shielding is the mechanism of delaying or lessening magnetic fields using blockades made of conductive or magnetized materials. It is important to save sensitive electronic devices from electromagnetic intrusion. Furthermore, the shielding impact depends on the material's tendency to absorb or release electromagnetic rays. In this mechanism, there are two types of shielding: low frequency shielding and high frequency shielding. For low frequencies, magnetic fields can penetrate most of the materials and are more difficult to shield. The material belonging to high magnetic permeability, such as mu-metal, can absorb and release magnetic current effectively and save them from passing through the shielding. In the case of higher frequencies, the skin effect becomes more

significant for high magnetic permeability and, therefore, the thickness of the shielding material for magnetic fields, thereby improving adequately. We summarize the significance of magnetic permeability on magnetized shielding that the low frequency magnetic fields are harmful, and high permeability materials are important and favorable for establishing effective magnetized shielding.

C. The skin depth and magnetic permeability

In heat and fluid flow processes, the skin depth measures how effectively an electromagnetic ray can enter into a conductive material before it is meaningfully reduced. For increasing values of electromagnetic frequency, the skin depth is reduced, which means that the electromagnetic rays penetrate less deeply. On the other hand, the materials with higher electrical conductivity and higher magnetic permeability have a smaller skin depth, leading to a greater decrease of electromagnetic waves. Moreover, we define the skin depth as inversely proportional to the square root of magnetic permeability. From this understanding, it is concluded that the materials with large magnetic permeability will have a low skin depth and, therefore, the electromagnetic waves are confined near the surface and lead to a very thin layer of penetration. These are the special applications of magnetized shielding for the designing of inductors and transformers. These concepts are very important in different applications, such as radio frequency technology and material science.

D. Impact of magnetic permeability on transverse motion

The motion of the charge particle is due to the impact of the magnetic field; therefore, the magnetic force acts normal to both the velocity of the charge particle and the magnetic field direction. This normal force can lead the particle to track a curved path, leading to normal motion, which is designated as transverse motion. In materials with greater magnetic permeability, the induced magnetic field within the material is resilient to the same magnetic field applied to the surface. This resilient magnetic field increases the Lorentz force acting on the charges in motion, thereby the magnetic permeability enlarging the transverse motion within the domain under consideration. Therefore, the permeability of the materials impacts how efficiently the magnetic fields can be used to switch the motion of charged particles. Materials with upper permeability can cause stronger detention and a more accurate mechanism of transverse motion during magnetized heat and fluid flow processes. The spreading of electromagnetic waves in materials is also swayed by the magnetic penetrability, such as in waveguides or resonant cavities; the transverse electromagnetic types are pretentious by the permeability, which determines the phase velocity profile and impedance of the wave's motion. It is pertinent to mention that the magnetic permeability meaningfully influences the transverse motion in magnetic fields by manipulating the magnitude of the magnetic field within a material, which consequently affects the magnetic forces acting on moving charges or current density. This connection is crucial in many scientific applications, such as electromagnetic waveguide systems, magnetic detention systems, and devices relying on accurate control of particle motion in magnetic fields. The impact of magnetic permeability is given in Ref. 20. It

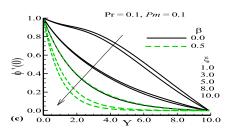
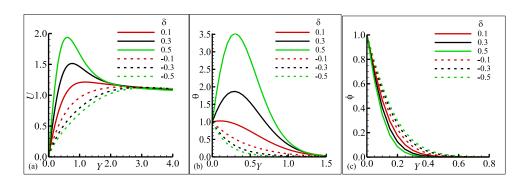


FIG. 1. Impact of transpiration in the presence of a magnetic field on current density.


is predicted that for increasing values of transpiration, the current density is decreased, as shown in Fig. 1.

E. Impact of magnetic permeability on current density

The materials for which the magnetic field is changed can cause the eddy currents and are induced within the material through which the charge particle is transmitted. The scale of these induced changes depends on the rate of change of the magnetic field and the material's magnetic permeability. For higher magnetic permeability, the induced current is higher for large magnetic fields. The higher magnetic permeability of the core material increases the magnetic flux association, which leads to higher current densities in the windings due to the higher induced electromagnetic force. If the magnetic permeability of the material is variable and depends on the magnetization of the material, it leads to non-linear behavior, which develops the complex relationship between the magnetic field and current density. The phenomenon of magnetic permeability has its crucial influence on current density in many electromagnetic contexts. If the magnetic permeability of the material is increased, it can produce more pronounced induced current near the surface. We summarize the discussion by saying that the relationship between magnetic permeability and current density is important to designing efficient electromagnetic devices such as inductors, transformers, and conductors. Ashraf et al. 16 have concluded the results as given in Table I for the impact of magnetic permeability on current density. From this table, it is evident that the magnetic permeability reduced the current density in the presence of electromagnetic rays. The impact of thermal radiation along a magnetized permeable plate in the presence of magnetic permeability is given in Ref. 16 and is predicted in Table I.

TABLE I. Impact of magnetic permeability parameter ξ on current density for different values of radiation parameter Rd.

ξ	Rd = 1.0	Rd = 10.0
0.05	1.350 80	1.376 91
0.1	1.307 72	1.330 24
1.0	0.769 50	0.777 77
3.0	0.323 95	0.324 14
5.0	0.188 62	0.188 55
10.0	0.087 58	0.081 00
=======================================	0.007 36	0.081 (

FIG. 2. Geometrical interpretation of heat source and sink in the presence of magnetic field.

F. Impact of magnetic permeability on heat source and sink

The impact of magnetic permeability can be applied in heat sink problems to design the devices for the removal of heat from structures by interchanging the magnetic fields in order to absorb and dissipate heat. The materials with high-permeability are frequently used for system shielding to protect components from externally applied magnetic fields. Such materials act like heat sources due to magnetic damage. Basically, effective heat sinks or thermal management strategies are employed to manage the heat generated within the shielded components during processes. For strong magnetic fields, the permeability of the materials must be used and considered. In magnetohydrodynamics problems where weak magnetic permeability of the materials is involved, such as aluminum or copper, they are considered heat sinks because they significantly interfere with magnetic fields. In these mechanisms, the heat is dissipated effectively without affecting the magnetic system's performance. The impact of heat source and sink in the presence of an electrically conducted cone embedded in porous has been predicted in Ref. 90 and is given in Fig. 2.

II. CONCLUSION

From the understanding of the above-mentioned literature review, it is concluded that the impact of magnetic permeability on heat and fluid flow mechanisms is very complex and is critical for various industrial applications. Furthermore, it is concluded that the magnetic permeability where aligned magnetic fields interact with fluids can reduce the convective heat transfer and increase the heat conduction. In this study of the literature review, we have the following findings.

The significance of magnetic permeability on magnetized shielding is that the low frequency magnetic field is harmful, and high permeability materials are important and favorable for establishing effective magnetized shielding. The influence of magnetic permeability on thermal conductance is normally slight and indirect, but for some specific applications, it could be important. It is concluded that the materials with large magnetic permeability will have a low skin depth and, therefore, the electromagnetic waves are confined near the surface and lead to a very thin layer of penetration. The permeability of the materials impacts how efficiently the magnetic fields can be used to switch the motion of charged particles. If the magnetic permeability of the material is variable and depends

on the magnetization of the material, it leads to non-linear behavior, which develops the complex relationship between the magnetic field and current density. The higher magnetic permeability of the core material increases the magnetic flux association, which leads to higher current densities in the windings due to the higher induced electromagnetic force. If the magnetic permeability of the material is variable and depends on the magnetization of the material, it leads to non-linear behavior, which develops the complex relationship between the magnetic field and current density. The materials with high-permeability are frequently used for system shielding to protect components from externally applied magnetic fields. Here, it is pertinent to mention that the material and literature highlighted in this review will be fruitful for researchers, scientists, and academicians to establish new theories and ideas in the field where magnetic field is important.

III. FUTURE RECOMMENDATIONS

There are many opportunities for further research and development in the rich field of magnetic permeability in relation to heat and fluid flow characteristics, especially in applications involving magnetized shielding. The following suggestions are for further research in this field:

- Examine novel materials with specific magnetic permeability characteristics that can preserve thermal conductivity while improving shielding efficacy. Composites and nanostructured materials may fall under this category.
- Examine materials with temperature-dependent magnetic permeability that provide dynamic shielding in a range of thermal conditions.
- Create sophisticated CFD models that integrate fluid flow dynamics, heat transport, and magnetic field effects. This will make it easier to comprehend how the Lorentz force affects thermal distribution and flow patterns in magnetically protected situations.
- Use multiscale modeling techniques to capture the relationships between macroscopic fluid flow and heat transfer events and the microstructural characteristics of materials.
- To maximize thermal management and efficiency, investigate how magnetic permeability affects heat and fluid flow in renewable energy systems, such as geothermal or solar thermal collectors.

ACKNOWLEDGMENTS

The authors extend their appreciation to Prince Sattam bin Abdulaziz University for funding this research work through Project No. 2024/RV/14.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

All authors have equal work. All authors have read and agreed to the published version of the paper.

Hossam A. Nabwey: Conceptualization (equal); Formal analysis (equal); Funding acquisition (equal); Methodology (equal); Project administration (lead); Writing – original draft (equal); Writing – review & editing (equal). Muhammad Ashraf: Conceptualization (equal); Formal analysis (equal); Methodology (equal); Writing – original draft (equal); Writing – review & editing (equal). A. M. Rashad: Conceptualization (equal); Formal analysis (equal); Methodology (equal); Writing – review & editing (equal). Ali J. Chamkha: Conceptualization (equal); Formal analysis (equal); Investigation (equal); Writing – review & editing (equal).

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

- ¹R. Street, J. C. Woolley, and P. B. Smith, "Magnetic viscosity under discontinuously and continuously variable field conditions," Proc. Phys. Soc., Sect. B **65**(9), 679 (1952).
- ²A. Timur, "Pulsed nuclear magnetic resonance studies of porosity, movable fluid, and permeability of sandstones," J. Pet. Technol. 21(06), 775–786 (1969).
- ³ A. R. Muxworthy and E. McClelland, "Review of the low-temperature magnetic properties of magnetite from a rock magnetic perspective," Geophys. J. Int. **140**(1), 101–114 (2000).
- ⁴A. J. Chamkha and A. R. A. Khaled, "Hydromagnetic combined heat and mass transfer by natural convection from a permeable surface embedded in a fluid-saturated porous medium," Int. J. Numer. Methods Heat Fluid Flow 10(5), 455–477 (2000).
- ⁵Y. J. Kim, "Unsteady MHD convective heat transfer past a semi-infinite vertical porous moving plate with variable suction," Int. J. Eng. Sci. 38(8), 833–845 (2000).
 ⁶M. Kinyanjui, J. K. Kwanza, and S. M. Uppal, "Magnetohydrodynamic free convection heat and mass transfer of a heat generating fluid past an impulsively started infinite vertical porous plate with Hall current and radiation absorption," Energy Convers. Manage. 42(8), 917–931 (2001).
- ⁷R. L. Comstock, "Review modern magnetic materials in data storage," J. Mater. Sci.: Mater. Electron. **13**, 509–523 (2002).
- ⁸M. A. Seddeek, "Effects of magnetic field and variable viscosity on forced non-Darcy flow about a flat plate with variable wall temperature in porous media in the presence of suction and blowing," J. Appl. Mech. Tech. Phys. **43**(1), 13–17 (2002).
- ⁹ A. R. Khaled and K. Vafai, "Hydromagnetic squeezed flow and heat transfer over a sensor surface," Int. J. Eng. Sci. 42(5-6), 509-519 (2004).

- ¹⁰C. H. Chen, "Heat and mass transfer in MHD flow by natural convection from a permeable, inclined surface with variable wall temperature and concentration," Acta Mech. 172(3–4), 219–235 (2004).
- ¹¹A. J. Chamkha and A. Al-Mudhaf, "Unsteady heat and mass transfer from a rotating vertical cone with a magnetic field and heat generation or absorption effects," Int. J. Therm. Sci. 44(3), 267–276 (2005).
- ¹²M. Abd El-Aziz, "Thermal-diffusion and diffusion-thermo effects on combined heat and mass transfer by hydromagnetic three-dimensional free convection over a permeable stretching surface with radiation," Phys. Lett. A 372(3), 263–272 (2008).
- ¹³O. A. Bég, J. Zueco, R. Bhargava, and H. S. Takhar, "Magnetohydrodynamic convection flow from a sphere to a non-Darcian porous medium with heat generation or absorption effects: Network simulation," Int. J. Therm. Sci. 48(5), 913–921 (2009).
- ¹⁴T. Grosan, C. Revnic, I. Pop, and D. B. Ingham, "Magnetic field and internal heat generation effects on the free convection in a rectangular cavity filled with a porous medium," Int. J. Heat Mass Transfer 52(5–6), 1525–1533 (2009).
- ¹⁵M. S. S. Alam, M. M. M. Rahman, and M. A. A. Sattar, "Transient magnetohydrodynamic free convective heat and mass transfer flow with thermophoresis past a radiate inclined permeable plate in the presence of variable chemical reaction and temperature dependent viscosity," Nonlinear Anal.: Modell. Control 14(1), 3–20 (2009).
- ¹⁶M. Ashraf, S. Asghar, and M. A. Hossain, "Thermal radiation effects on hydromagnetic mixed convection flow along a magnetized vertical porous plate," Math. Probl. Eng. 2010, 686596.
- ¹⁷M. Ashraf, S. Asghar, and M. A. Hossain, "Numerical simulation of Magnetohydrodynamics mixed convection flow when the magnetic field, free stream velocity and surface temperature oscillate simultaneously," in Proceedings of 17th International Conference on Mechanical Engineering (ICME-2011), Dhaka, Bangladesh, 2011.
- ¹⁸M. H. Yazdi, S. Abdullah, I. Hashim, and K. Sopian, "Effects of viscous dissipation on the slip MHD flow and heat transfer past a permeable surface with convective boundary conditions," Energies 4(12), 2273–2294 (2011).
- ¹⁹X. Su, L. Zheng, X. Zhang, and J. Zhang, "MHD mixed convective heat transfer over a permeable stretching wedge with thermal radiation and ohmic heating," Chem. Eng. Sci. **78**, 1–8 (2012).
- ²⁰ M. Ashraf, S. Asghar, and M. A. Hossain, "Computational study of combined effects of conduction-radiation and hydromagnetics on natural convection flow past magnetized permeable plate," Appl. Math. Mech. 33, 731–748 (2012).
 ²¹ M. A. A. Hamad, M. J. Uddin, and A. M. Ismail, "Radiation effects on heat and
- ²¹ M. A. A. Hamad, M. J. Uddin, and A. M. Ismail, "Radiation effects on heat and mass transfer in MHD stagnation-point flow over a permeable flat plate with thermal convective surface boundary condition, temperature dependent viscosity and thermal conductivity," Nucl. Eng. Des. 242, 194–200 (2012).
- ²²D. Harish Babu and P. V. Satya Narayana, "Influence of variable permeability and radiation absorption on heat and mass transfer in MHD micropolar flow over a vertical moving porous plate," ISRN Thermodyn. 2013(1), 953536.
- ²³B. K. Sharma, A. P. Singh, K. Yadav, and R. C. Chaudhary, "Effects of chemical reaction on magneto-micropolar fluid flow from a radiative surface with variable permeability," Int. J. Appl. Mech. Eng. 18(3), 833–851 (2013).
- ²⁴M. Ashraf, S. Asghar, and M. A. Hossain, "Natural convection heat transfer flow past a magnetized vertical permeable plate for liquid metals," Middle East J. Sci. Res. 13(8), 983–992 (2013).
- ²⁵ M. Turkyilmazoglu, "The analytical solution of mixed convection heat transfer and fluid flow of a MHD viscoelastic fluid over a permeable stretching surface," Int. J. Mech. Sci. 77, 263–268 (2013).
- ²⁶D. Pal, "Hall current and MHD effects on heat transfer over an unsteady stretching permeable surface with thermal radiation," Comput. Math. Appl. 66(7), 1161–1180 (2013).
- ²⁷W. Ibrahim and B. Shankar, "MHD boundary layer flow and heat transfer of a nanofluid past a permeable stretching sheet with velocity, thermal and solutal slip boundary conditions," Comput. Fluids 75, 1–10 (2013).
- ²⁸ M. S. Kandelousi, "Effect of spatially variable magnetic field on ferrofluid flow and heat transfer considering constant heat flux boundary condition," Eur. Phys. J. Plus 129, 248 (2014).
- ²⁹M. M. Rashidi, B. Rostami, N. Freidoonimehr, and S. Abbasbandy, "Free convective heat and mass transfer for MHD fluid flow over a permeable vertical

- stretching sheet in the presence of the radiation and buoyancy effects," Ain Shams Eng. J. 5(3), 901-912 (2014).
- ³⁰ M. Ashraf, S. Asghar, and M. A. Hossain, "The computational study of the effect of magnetic field and free stream velocity oscillation on boundary layer past a magnetized vertical plate," Appl. Comput. Math. **13**(2), 175–193 (2014).
- ³¹ M. Ferdows, M. S. Khan, O. A. Bég, M. A. K. Azad, and M. M. Alam, "Numerical study of transient magnetohydrodynamic radiative free convection nanofluid flow from a stretching permeable surface," Proc. Inst. Mech. Eng., Part E 228(3), 181–196 (2014).
- ³²W. N. Mutuku and O. D. Makinde, "Hydromagnetic bioconvection of nanofluid over a permeable vertical plate due to gyrotactic microorganisms," Comput. Fluids 95, 88–97 (2014).
- ³³M. M. Rashidi, M. Ali, N. Freidoonimehr, B. Rostami, and M. A. Hossain, "Mixed convective heat transfer for MHD viscoelastic fluid flow over a porous wedge with thermal radiation," Adv. Mech. Eng. 6, 735939 (2014).
- ³⁴H. Dessie and N. Kishan, "MHD effects on heat transfer over stretching sheet embedded in porous medium with variable viscosity, viscous dissipation and heat source/sink," Ain Shams Eng. J. 5(3), 967–977 (2014).
- ³⁵L. Chen, A. Offenhäusser, and H. J. Krause, "Magnetic tweezers with high permeability electromagnets for fast actuation of magnetic beads," Rev. Sci. Instrum. 86(4), 044701 (2015).
- ³⁶R. C. Shah and N. I. Patel, "Impact of various and arbitrary porous structure in the study of squeeze step bearing lubricated with magnetic fluid considering variable magnetic field," Proc. Inst. Mech. Eng., Part E 229(5), 646–659 (2015).
- ³⁷S. Selimli, Z. Recebli, and E. Arcaklioglu, "Combined effects of magnetic and electrical field on the hydrodynamic and thermophysical parameters of magnetoviscous fluid flow," Int. J. Heat Mass Transfer 86, 426–432 (2015).
- ³⁸ M. Fakour, A. Vahabzadeh, and D. D. Ganji, "Study of heat transfer and flow of nanofluid in permeable channel in the presence of magnetic field," Propul. Power Res. 4(1), 50–62 (2015).
- ³⁹P. Rana and O. A. Bég, "Mixed convection flow along an inclined permeable plate: Effect of magnetic field, nanolayer conductivity and nanoparticle diameter," Appl. Nanosci. 5, 569–581 (2015).
- ⁴⁰A. Mythreye, J. P. Pramod, and K. S. Balamurugan, "Chemical reaction on unsteady MHD convective heat and mass transfer past a semi-infinite vertical permeable moving plate with heat absorption," Procedia Eng. 127, 613–620 (2015).
- ⁴¹ N. S. Akbar and A. W. Butt, "Magnetic field effects for copper suspended nanofluid venture through a composite stenosed arteries with permeable wall," J. Magn. Magn. Mater. 381, 285–291 (2015).
- ⁴²N. Freidoonimehr, M. M. Rashidi, and S. Mahmud, "Unsteady MHD free convective flow past a permeable stretching vertical surface in a nano-fluid," Int. J. Therm. Sci. 87, 136–145 (2015).
- ⁴³M. Sheikholeslami, K. Vajravelu, and M. M. Rashidi, "Forced convection heat transfer in a semi annulus under the influence of a variable magnetic field," Int. J. Heat Mass Transfer **92**, 339–348 (2016).
- ⁴⁴S. O. Salawu and M. S. Dada, "Radiative heat transfer of variable viscosity and thermal conductivity effects on inclined magnetic field with dissipation in a non-Darcy medium," J. Niger. Math. Soc. 35(1), 93–106 (2016).
- ⁴⁵A. N. Afifah, S. Syahrullail, and N. A. C. Sidik, "Magnetoviscous effect and thermomagnetic convection of magnetic fluid: A review," Renewable Sustainable Energy Rev. 55, 1030–1040 (2016).
- ⁴⁶ A. Muhammad, A. J. Chamkha, S. Iqbal, and M. Ahmad, "Effects of temperature-dependent viscosity and thermal conductivity on mixed convection flow along a magnetized vertical surface," Int. J. Numer. Methods Heat Fluid Flow 26(5), 1580–1592 (2016).
- ⁴⁷ M. Sheikholeslami, "CVFEM for magnetic nanofluid convective heat transfer in a porous curved enclosure," Eur. Phys. J. Plus 131(11), 413 (2016).
- ⁴⁸M. H. Mat Yasin, A. Ishak, and I. Pop, "MHD heat and mass transfer flow over a permeable stretching/shrinking sheet with radiation effect," J. Magn. Magn. Mater. **407**, 235–240 (2016).
- ⁴⁹J. Chen, J. Li, R. Qu, and M. Ge, "Magnet-frozen-permeability FEA and DC-biased measurement for machine inductance: Application on a variable-flux PM machine," IEEE Trans. Ind. Electron. 65(6), 4599–4607 (2017).
- 50 M. Ashraf, I. Iqbal, M. Ahmad, and N. Sultana, "Numerical prediction of natural convection flow in the presence of weak magnetic Prandtl number and strong

- magnetic field with algebraic decay in mainstream velocity," Adv. Appl. Math. Mech. 9(2), 349–361 (2017).
- ⁵¹ M. Sheikholeslami and M. Seyednezhad, "Nanofluid heat transfer in a permeable enclosure in presence of variable magnetic field by means of CVFEM," Int. J. Heat Mass Transfer 114, 1169–1180 (2017).
- ⁵²M. Sheikholeslami, D. D. Ganji, and R. Moradi, "Heat transfer of Fe₃O₄-water nanofluid in a permeable medium with thermal radiation in existence of constant heat flux," Chem. Eng. Sci. **174**, 326–336 (2017).
- 53 M. Sheikholeslami, "Magnetic field influence on CuO–H₂O nanofluid convective flow in a permeable cavity considering various shapes for nanoparticles," Int. J. Hydrogen Energy **42**(31), 19611–19621 (2017).
- ⁵⁴M. Amani, M. Ameri, and A. Kasaeian, "Investigating the convection heat transfer of Fe₃O₄ nanofluid in a porous metal foam tube under constant magnetic field," Exp. Therm. Fluid Sci. **82**, 439–449 (2017).
- ⁵⁵M. Sheikholeslami and A. Zeeshan, "Analysis of flow and heat transfer in water based nanofluid due to magnetic field in a porous enclosure with constant heat flux using CVFEM," Comput. Methods Appl. Mech. Eng. 320, 68–81 (2017).
- ⁵⁶M. Biglarian, M. Rahimi Gorji, O. Pourmehran, and G. Domairry, "H₂O based different nanofluids with unsteady condition and an external magnetic field on permeable channel heat transfer," Int. J. Hydrogen Energy **42**(34), 22005–22014 (2017).
- ⁵⁷ M. K. Nayak, N. S. Akbar, V. S. Pandey, Z. H. Khan, and D. Tripathi, "3D free convective MHD flow of nanofluid over permeable linear stretching sheet with thermal radiation," Powder Technol. 315, 205–215 (2017).
- 58 M. Nojoomizadeh, A. Karimipour, M. Firouzi, and M. Afrand, "Investigation of permeability and porosity effects on the slip velocity and convection heat transfer rate of Fe $_3$ O $_4$ /water nanofluid flow in a microchannel while its lower half filled by a porous medium," Int. J. Heat Mass Transfer 119, 891–906 (2018).
- ⁵⁹M. Hatami, J. Zhou, J. Geng, and D. Jing, "Variable magnetic field (VMF) effect on the heat transfer of a half-annulus cavity filled by Fe₃O₄-water nanofluid under constant heat flux," J. Magn. Magn. Mater. **451**, 173–182 (2018).
- 60 M. Sheikholeslami and D. D. Ganji, "Influence of electric field on Fe $_3O_4$ -water nanofluid radiative and convective heat transfer in a permeable enclosure," J. Mol. Liq. 250, 404–412 (2018).
- ⁶¹S. Chaudhary and M. K. Choudhary, "Partial slip and thermal radiation effects on hydromagnetic flow over an exponentially stretching surface with suction or blowing," Therm. Sci. 22(2), 797–808 (2018).
- 62 M. Sheikholeslami, "Influence of magnetic field on $\rm Al_2O_3\text{-}H_2O$ nanofluid forced convection heat transfer in a porous lid driven cavity with hot sphere obstacle by means of LBM," J. Mol. Liq. 263, 472–488 (2018).
- ⁶³ H. R. Ashorynejad and A. Zarghami, "Magnetohydrodynamics flow and heat transfer of Cu-water nanofluid through a partially porous wavy channel," Int. J. Heat Mass Transfer 119, 247–258 (2018).
- ⁶⁴S. Shaw, S. S. Motsa, and P. Sibanda, "Magnetic field and viscous dissipation effect on bioconvection in a permeable sphere embedded in a porous medium with a nanofluid containing gyrotactic micro-organisms," Heat Transfer—Asian Res. 47(5), 718–734 (2018).
- ⁶⁵M. Bibi, M. Y. Malik, and M. Tahir, "Numerical study of unsteady Williamson fluid flow and heat transfer in the presence of MHD through a permeable stretching surface," Eur. Phys. J. Plus 133, 154 (2018).
- ⁶⁶Y. Cheng and D. Li, "Experimental investigation on convection heat transfer characteristics of ferrofluid in a horizontal channel under a non-uniform magnetic field," Appl. Therm. Eng. 163, 114306 (2019).
- ⁶⁷H. A. Nabwey, S. Anwar, A. Muhammad, U. Ahmad, and A. M. Rashad, "The influence of temperature-dependent variable viscosity and suction on a natural convective heat transfer in magneto generated plume," Case Stud. Therm. Eng. 61, 105007 (2024).
- ⁶⁸M. Sheikholeslami, H. Keramati, A. Shafee, Z. Li, O. A. Alawad, and I. Tlili, "Nanofluid MHD forced convection heat transfer around the elliptic obstacle inside a permeable lid drive 3D enclosure considering lattice Boltzmann method," Physica A 523, 87–104 (2019).
- ⁶⁹ M. V. Krishna, P. V. S. Anand, and A. J. Chamkha, "Heat and mass transfer on free convective flow of amicropolar fluid through a porous surface with inclined magnetic field and hall effects," Spec. Top. Rev. Porous Media: Int. J. **10**(3), 203 (2019).

- ⁷⁰R. Jusoh, R. Nazar, and I. Pop, "Magnetohydrodynamic boundary layer flow and heat transfer of nanofluids past a bidirectional exponential permeable stretching/shrinking sheet with viscous dissipation effect," J. Heat Transfer 141(1), 012406 (2019).
- ⁷¹ M. Izadi, R. Mohebbi, A. A. Delouei, and H. Sajjadi, "Natural convection of a magnetizable hybrid nanofluid inside a porous enclosure subjected to two variable magnetic fields," Int. J. Mech. Sci. 151, 154–169 (2019).
- ⁷²N. S. Elgazery, "Nanofluids flow over a permeable unsteady stretching surface with non-uniform heat source/sink in the presence of inclined magnetic field," J. Egypt. Math. Soc. 27(1), 9 (2019).
- ⁷³ A. Khan, M. Ashraf, A. M. Rashad, and H. A. Nabwey, "Impact of heat generation on magneto-nanofluid free convection flow about sphere in the plume region," Mathematics 8(11), 2010 (2020).
- ⁷⁴M. Ashraf and Z. Ullah, "Effects of variable density on oscillatory flow around a non-conducting horizontal circular cylinder," AIP Adv. 10(1), 015020 (2020).
- ⁷⁵A. A. Siddiqui and M. Turkyilmazoglu, "Natural convection in the ferrofluid enclosed in a porous and permeable cavity," Int. Commun. Heat Mass Transfer 113, 104499 (2020).
- ⁷⁶Z. Ullah, M. Ashraf, and A. M. Rashad, "Magneto-thermal analysis of oscillatory flow around a non-conducting horizontal circular cylinder," J. Therm. Anal. Calorim. 42, 1567–1578 (2020).
- ⁷⁷Z. Ullah, M. Ashraf, S. Zia, and I. Ali, "Surface temperature and free-stream velocity oscillation effects on mixed convention slip flow from surface of a horizontal circular cylinder," Therm. Sci. 24(Suppl 1), S13–S23 (2020).
- ⁷⁸ A. Ilyas and M. Ashraf, "Periodic mixed convection flow along the surface of a thermally and electrically conducting cone," Therm. Sci. 24(Suppl 1), S225–S235 (2020).
- ⁷⁹M. Ashraf and A. Saif, "Computational analysis of magnetohydrodynamic mixed convection flow along vertical cylinder in the presence of aligned magnetic field," Int. J. Comput. Sci. Math. **11**(3), 222–239 (2020).
- ⁸⁰ Q. M. Al-Mdallal, N. Indumathi, B. Ganga, and A. Abdul Hakeem, "Marangoni radiative effects of hybrid-nanofluids flow past a permeable surface with inclined magnetic field," Case Stud. Therm. Eng. 17, 100571 (2020).
- ⁸¹ M. Shuaib, R. A. Shah, and M. Bilal, "Von-Karman rotating flow in variable magnetic field with variable physical properties," Adv. Mech. Eng. **13**(2), 1687814021990463 (2021).
- ⁸² A. A. Khan, A. Ahmed, S. Askar, M. Ashraf, H. Ahmad, and M. N. Khan, "Influence of the induced magnetic field on second-grade nanofluid flow with multiple slip boundary conditions," Waves Random Complex Media 34, 5686 (2021)
- ⁸³ M. Ashraf, Z. Ullah, S. Zia, S. O. Alherbi, D. Baleanu, and I. Khan, "Analysis of the physical behavior of the periodic mixed-convection flow around a nonconducting horizontal circular cylinder embedded in porous medium," J. Math. 2021, 8839146.
- 84 X. Zhang and Y. Zhang, "Heat transfer and flow characteristics of Fe $_3$ O $_4$ -water nanofluids under magnetic excitation," Int. J. Therm. Sci. 163, 106826 (2021).
- ⁸⁵S. Marzougui, M. Bouabid, F. Mebarek-Oudina, N. Abu-Hamdeh, M. Magherbi, and K. Ramesh, "A computational analysis of heat transport irreversibility phenomenon in a magnetized porous channel," Int. J. Numer. Methods Heat Fluid Flow 31(7), 2197–2222 (2021).
- ⁸⁶H. A. Nabwey, M. Ashraf, U. Ahmad, T. Yasmeen, and A. M. Rashad, "Investigation of the characteristics of optically dense gray mixed convection fluid flow along a cantilever shape," AIP Adv. 14, 075314 (2024).
- 87 L. Zhang, M. M. Bhatti, A. Shahid, R. Ellahi, O. A. Bég, and S. M. Sait, "Nonlinear nanofluid fluid flow under the consequences of Lorentz forces and Arrhenius kinetics through a permeable surface: A robust spectral approach," J. Taiwan Inst. Chem. Eng 124, 98–105 (2021).
- ⁸⁸I. Pishkar, B. Ghasemi, A. Raisi, and S. M. Aminossadati, "Simulation of variable magnetic field effect on natural convection heat transfer of Fe₃O₄/graphite slurry based on experimental properties of slurries," J. Appl. Fluid Mech. **15**(1), 1–14 (2021).
- ⁸⁹M. Almeshaal and S. Saha, "Effect of magnetic field on fluid flow characteristics and augmentation of heat transfer in a heat exchanger," J. Eng. Res. **10**, 4B (2022).

- ⁹⁰ A. Ilya, M. Ashraf, A. Ali, Z. Shah, P. Kumam, and P. Thounthong, "Heat source and sink effects on periodic mixed convection flow along the electrically conducting cone inserted in porous medium," PLoS One 16(12), e0260845 (2021).
 ⁹¹ F. Fan, C. Qi, J. Tu, and Z. Ding, "Effects of variable magnetic field on particle fouling properties of magnetic nanofluids in a novel thermal exchanger system," Int. J. Therm. Sci. 175, 107463 (2022).
- ⁹²Z. Ullah, M. Ashraf, I. E. Sarris, and T. E. Karakasidis, "The impact of reduced gravity on oscillatory mixed convective heat transfer around a non-conducting heated circular cylinder," Appl. Sci. 12(10), 5081 (2022).
- ⁹³ A. Ilyas, M. Ashraf, and A. M. Rashad, "Periodical analysis of convective heat transfer along electrical conducting cone embedded in porous medium," Arabian J. Sci. Eng. 47(7), 8177–8188 (2022).
- ⁹⁴H. A. Nabwey, A. A. Khan, M. Ashraf, A. M. Rashad, S. I. Alshber, and M. Abu Hawsah, "Computational analysis of the magnetized second grade fluid flow using modified Fourier and Fick's Law towards an exponentially stretching sheet," *Mathematics* **10**(24), 4737 (2022).
- ⁹⁵ M. Ashraf, U. Ahmad, S. Zia, R. S. R. Gorla, A. S. Al-Johani, I. Khan, and M. Andualem, "Magneto-exothermic catalytic chemical reaction along a curved surface," Mathematical Probl. Eng. 2022(1), 8439659.
- ⁹⁶M. Ashraf, A. Ilyas, Z. Ullah, and A. Ali, "Combined effects of viscous dissipation and magnetohydrodynamic on periodic heat transfer along a cone embedded in porous medium," Proc. Inst. Mech. Eng., Part E 236(6), 2325–2335 (2022).
- ⁹⁷H. A. Nabwey, A. M. A. EL-Hakiem, W. A. Khan, A. M. Rashad, and G. Sayed, "Heat and mass transport micropolar Maxwell and Williamson nanofluids flow past a perpendicular cylinder using combined convective flow," Chem. Eng. J. Adv. 19, 100637 (2024).
- ⁹⁸H. A. Nabwey, A. M. Rashad, and W. A. Khan, "Slip microrotation flow of silver-sodium alginate nanofluid via mixed convection in a porous medium," Mathematics 9(24), 3232 (2021).
- ⁹⁹Z. Ullah, N. Akkurt, H. F. Alrihieli, S. M. Eldin, A. M. Alqahtani, A. Hussanan, M. Ashraf, and M. Jabeen, "Temperature-dependent density and magnetohydrodynamic effects on mixed convective heat transfer along magnetized heated plate in thermally stratified medium using Keller box simulation," Appl. Sci. 12, 11461 (2022).
- 100 A. Abbas, I. E. Sarris, M. Ashraf, K. Ghachem, N. Hnaien, and B. M. Alshammari, "The effects of reduced gravity and radiative heat transfer on the magnetohydrodynamic flow past a non-rotating stationary sphere surrounded by a porous medium," Symmetry 15(4), 806 (2023).
- ¹⁰¹ P. Jalili, A. A. Azar, B. Jalili, and D. D. Ganji, "Study of nonlinear radiative heat transfer with magnetic field for non-Newtonian Casson fluid flow in a porous medium," Results Phys. 48, 106371 (2023).
- ¹⁰²K. A. M. Alharbi, Z. Ullah, N. Jabeen, and M. Ashraf, "Magnetohydrodynamic and thermal performance of electrically conducting fluid along the symmetrical and vertical magnetic plate with thermal slip and velocity slip effects," Symmetry 15(6), 1148 (2023).
- ¹⁰³H. A. Nabwey, S. Mehmood, S. Zia, A. Rehman, M. Ashraf, and A. M. Rashad, "A central-upwind scheme for two-phase shallow granular flow model," Alexandria Eng. J. 82, 291–297 (2023).
- ¹⁰⁴H. A. Nabwey, Z. Ullah, A. Ilyas, M. Ashraf, A. M. Rashad, S. I. Alshber, and M. Abu Hawsah, "Reduced gravity and magnetohydrodynamic effects on transient mixed convection flow past a magnetized heated cone embedded in porous medium," J. Math. 2023, 9618432.
- ¹⁰⁵N. Zeb Khan, S. Bilal, A. Riaz, and T. Muhammad, "Coupled effects of variable permeability and adiabatic undulating walls on natural convective flow in a trapezoidal cavity: Finite element analysis," Results Phys. 56, 107267 (2024).
- ¹⁰⁶T. Maryam, U. Ahmad, M. Ashraf, and A. Ali, "Computational analysis magnetohydrodynamics natural convection flow round vertical thermally stratified jet: Finite difference method in conjunction with primitive variable formulation," Numer. Heat Transfer, Part B 11, 1 (2024).
- 107 M. W. Nazir, T. Javed, N. Ali, and M. Nazeer, "Effects of radiative heat flux and heat generation on magnetohydodynamics natural convection flow of nanofluid inside a porous triangular cavity with thermal boundary conditions," Numer. Methods Partial Differ. Equations 40(2), e22768 (2024).
- ¹⁰⁸N. U. B. Varma, J. L. Ramaprasad, and K. S. Balamurugan, "Impact of entropy generation and temperature gradient heat source on Cou-

ette flow in a permeable magnetic field," Heat Transfer 53(5), 2509-2524 (2024).

- 109 R. Revathi and T. Poornima, "Suction influence on magneto-convective fluid flow embedded in a permeable media under internal friction," J. Appl. Phys. 136(2), 024701 (2024).
- 110 A. J. Chamkha, "Unsteady MHD convective heat and mass transfer past a semi-infinite vertical permeable moving plate with heat absorption," Int. J. Eng. Sci. 42(2), 217–230 (2004).
 111 S. Anwar, U. Ahmad, G. Rasool, M. Ashraf, and K. Abbas, "Impact of porous
- ¹¹¹S. Anwar, U. Ahmad, G. Rasool, M. Ashraf, and K. Abbas, "Impact of porous medium on natural convection heat transfer in plume generated due to the combined effects of heat source and aligned magnetic field," Mod. Phys. Lett. B (published online) (2024).
- ¹¹²B. M. Cham, S. U. Islam, A. H. Majeed, M. R. Ali, and A. S. Hendy, "Numerical computations of magnetohydrodynamic (MHD) thermal fluid flow in a permeable cavity: A time dependent based study," Case Stud. Therm. Eng. 61, 104905 (2024).
- 113 M. Izadi, A. Hajjar, M. M. El Idi, Q. N. G. Lam, F. Alqurashi, and M. H. Mohamed, "Effect of anisotropic porous structure on mixed permanent magnetic-convection heat transfer under permanent twin magnets," Int. Commun. Heat Mass Transfer 158, 107831 (2024).
- 114 K. Agarwal, R. S. Baghel, A. Parmar, and A. Dadheech, "Jeffery slip fluid flow with the magnetic dipole effect over a melting or permeable linearly stretching sheet," Int. J. Appl. Comput. Math. 10(1), 5 (2024).