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A B S T R A C T   

This paper examines how nanoparticle aggregation and a consistent magnetic field influence the 
peristaltic movement of a dissipative nanofluid, which is caused by the sinusoidal deformation of 
the boundary. The viscosity of TiO2/H2O nanofluids is accurately determined by the Krieger- 
Dougherty model with nanoparticle aggregation, while thermal conductivity (TC) is estimated 
through the Bruggeman model. The set of governing equations are modeled in a fixed frame by 
utilizing the conservation laws of energy, mass and momentum. Galilean transformation is uti
lized to transform the system of equations into a wave frame, which is then converted into a 
dimensionless form. The assumption of a small Reynolds number and long wavelength serve to 
further simplify the set of equations, which are subsequently addressed through the imple
mentation of the differential quadrature method (DQM), a highly effective numerical technique. 
Quantities of interest, namely velocity, pressure gradient, temperature, trapping phenomena, heat 
transfer, and volumetric entropy generation are analyzed across a range of physical parameters, 
including the solid volume fraction (Φ = 0.01 − 0.04), Eckert number (Ec = 0.0 − 0.1), Hartman 
number (Mh = 0.2 − 2.2), Grashof number (Gr= 1.0 − 3.0) and temperature ratio parameter 
(θd = 0.5 − 2.5). A comparative analysis is conducted between the scenario involving aggregation 
and the one without aggregation. It is observed that nanoparticle aggregation significantly alters 
these quantities.  

Nomenclature 

Symbol Name 
a1,a2 Waves amplitudes 
B0 Magnetic field intensity 
c Speed of wave 
cp Specific heat capacity 
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Ec The Eckert number 
F Non-dimensional flow rate (wave frame) 
Gr Grashof number 
H∗

1,H∗
2 Right and Left walls 

k Thermal conductivity 
Ns Entropy generation number 
Mh Magnetic parameter 
P∗,P Pressure fields in laboratory and wave frame 
Pr Prandtl number 
Re Reynolds number 
Ṡʹ́ʹ

gen Volumetric Entropy generation rate 
(

Ṡʹ́ʹ
gen

)

0 
Characteristic entropy 

T∗ Dimensional temperature fields 
U∗,V∗ Unit less velocity components (laboratory frame) 
U,V Unit less velocity components (wave frame) 
X∗,Y∗ Rectangular space coordinates (laboratory frame) 
X,Y Rectangular space coordinates (wave frame) 
Φ Volume fraction of nanoparticles 
Θ Dimensionless Temperature 
β Thermal expansion coefficient 
σ Electrical conductivity 
χ Dimensionless flow rate (laboratory frame) 
μ Dynamic viscosity 
ρ Density 
λ Wavelength 
φ Phase difference 
θd Temperature difference parameter 
ψ Unit less stream function 
nf Nanofluid 
bf Base fluid  

1. Introduction 

It is now well-established that suspending solid particles in conventional fluids can significantly enhance their thermophysical 
properties, including viscosity, density, electrical conductivity, and thermal conductivity. The dispersal of nanoparticles with di
mensions smaller than 100 nm within conventional fluids is referred to as "nanofluid", a nomenclature introduced by Choi [1], who 
first experimentally uncovered this phenomenon. Mishra et al. [2] conducted a literature review, affirming that nanofluid viscosity is 
influenced by various factors, including base fluids (ordinary fluids like water), particles solid volume fraction, shape, size, temper
ature, aggregation, shear rate, surfactants, pH, and dispersion methods. Angayarkanni and Philip [3] undertook an extensive exam
ination of the literature concerning nanofluids, addressing various aspects including stability requirements, preparation 
methodologies, and approaches for quantifying thermal conductivity. Moreover, they mentioned a range of experimental findings to 
elucidate the thermal characteristics of nanofluids. The flow of nanofluids holds significant importance across diverse domains, 
encompassing biomedical sciences (e.g., drug delivery and diagnostics) and engineering applications (e.g., enhancing heat transfer and 
lubrication). In automotive engineering, nanofluids play a vital role in augmenting engine cooling systems and effectively dissipating 
heat from electronic components. This advancement contributes to enhancing overall vehicle performance and reliability, as docu
mented in Refs. [4–12]. 

Peristaltic transport in sinusoidal wavy channels has gained significance in physiology, biomedical engineering, and various in
dustries. Ongoing research focuses on peristaltic flow, particularly in medical devices and artificial organs such as dialysis machines 
and artificial hearts. Accurate regulation of fluid movement is crucial for peristaltic pumps used in drug delivery systems to ensure 
precise dosing for patients. Additionally, peristaltic pumping finds applications in the food and beverage, wastewater treatment, and 
chemical processing industries, offering advantages in preventing fluid contamination or damage due to the contained nature of the 
fluid within the tube, away from the pump mechanism. Foundational theoretical and experimental work on this subject has been 
accomplished by a group of scholars, including Latham [13], Burns and Parkes [14], Fung and Yi [15], Zein and Ostrach [16], Shapiro 
et al. [17], Srivastava and Srivastava [18], Brown and Hung [19]. Peristalsis combined with heat transfer finds application in various 
fields such as thermal therapy techniques, controlled heating or cooling of fluids during peristaltic pumping, and in food processing 
industries for cooking, pasteurization, and sterilization processes. Additionally, it is relevant in chemical engineering processes like 
mixing and separation. The peristaltic flow of nanofluids, particularly when subjected to a magnetic field, demonstrates a diverse array 
of uses in multiple scientific and engineering disciplines for examples lab-on-a-chip devices, hyperthermia therapy, 
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magnetohydrodynamic (MHD) pumps and generators, magnetic resonance imaging, drug delivery, ultrasound imaging, and more. 
Akbar’s [20] examined a peristaltic mechanism of copper/water nanofluid within a tube of uniform diameter subjected to a magnetic 
field, while also examining the heat transfer phenomena linked with it. Noreen et al. [21] studied mixed convection in the peristaltic 
motion of blood flow containing copper nanoparticles. Sara and Bhatti [22] documented a report on the influence of a fluctuating 
magnetic force on the Prandtl nanofluid (a mixture of blood and TiO2) in an endoscope. Prakash et al. [23] conducted a relative 
analysis of electro-osmotically intensified peristaltic flow of nanofluids considering water as working fluid, incorporating metallic 
nanoparticles like titania, alumina, and copper. The effect of strong magnetic field over the flow of a copper-water nanofluid within an 
asymmetric channel, considering ion slip and Hall current, was reported by Das et al. [24]. The equations are modified through small 
Reynolds number approximations along with long wavelength assumptions, to yield a closed-form exact solution. A comparative study 
between single particle nanofluid (Cu-water) and hybrid nanofluid (SiO2-copper-water) transport in a wavy tube is presented by 
Iftikhar et al. [25]. They also conducted a comparison between nanoparticles of different shapes. Models of nanofluids used in this 
study are based on the experiments almost similar to Das and Barman [24] who analyzed ionic hybrid metallic/oxide nanoparticles 
behavior through electro-osmotic flow/peristaltic within a porous-vertical microchannel. Ion-slip along with Hall currents were also 
included in their discussions, as the equations of motion admitted exact solutions under dimensionless form upon application of 
Debye-Hückel linearization together with large wavelength/small Reynolds number assumptions. Ashraf et al. [27] analyzed the 
peristaltic transport of blood infused with cylindrical gold nanoparticles within a non-uniformly shaped conduit. In their simulation, 
Das et al. [28] took into account magnetic fields, Hall currents, ion-slip currents, wall slip, and convective heating while simulating 
electroosmosis-modulated peristaltic flow of a Casson-model ionic hybrid nano-fluid (silicon and silver dioxide nanoparticles in water) 
through a microchannel integrated with porous medium. The electro-osmotic peristalsis of a ternary hybrid nanofluid (blood and 
gold-copper-titania) within diverging-converging ciliated microchannel was scrutinized by Ali et al. [29]. 

Waheed et al. [30] documented a study on the peristaltic movement of a ternary-hybrid nanofluid containing alumina, silver, and 
copper nanoparticles that are distributed in water. The peristaltic flow of hybrid nanofluid blood through a micro-vessel was docu
mented by Ali et al. [31], by considering Lorentz force and a heat source. They simplified the equations using Debye–Hückel line
arization and lubrication theory, and applied the analytical method to get the series solutions for the non-dimensional equations. In 
engineering, heat transfer must maintain energy quality and mitigate degradation throughout the heat transfer process. The first 
principle of thermodynamics ensures that total energy remains constant, while the second law indicates a consistent decline in energy 
quality, as measured by entropy. The goal is to minimize entropy generation to preserve energy quality in fluid flow problems. Un
derstanding the entropy production in the flow volume is crucial for this objective. Minimizing entropy generation significantly en
hances system performance [32–41]. Akbar et al. [42] conducted a second law analysis within the peristaltic motion of a nanofluid 
containing copper nanoparticles and water. In a comparable investigation, Qasim et al. [43] examined the entropy production within 
the motion of a nanofluid, where methanol served as the base fluid, passing through a channel that exhibited asymmetrical 
deformability. Akbar and Butt [44] have delineated the origins of entropy production during the peristaltic flow of nanofluid through a 
uniformly wavy tube. Noreen et al. [44] analyzed electroosmotic flow of water-based nanofluid in an asymmetric porous channel. 
Entropy generation analysis is also conducted is the presence of viscous heating. Using hybrid Cu-Ag nanoparticles in a heat-sourced 
tube, Ali et al. [46] examined entropy formation and heat transmission in ciliary-induced peristaltic blood flow. This analysis 
employed the Phan-Thien-Tanner model to elucidate the blood’s non-Newtonian behavior. 

All studies [20–46] on the peristaltic flow of various types of nanofluids were conducted without taking nanoparticle aggregation. 
The aggregating changes the surface area and effective dimensions of the nanoparticles, therefore affecting the thermal conductivity 
and viscosity of the nanofluid The phenomenon of aggregation has the capability to significantly influence the efficiency and resilience 
of nanofluids across a wide range of uses, including, such as thermal management, biomedical imaging, and drug delivery. Therefore, 
controlling the aggregating of nanoparticles is important and the proper distribution of nanoparticles could lead to improved nanofluid 
characteristics and performance [47–51]. Therefore, this article aims to examine the influence of nanoparticle aggregation on the 
peristaltic transport of a dissipative TiO2/H2O nanofluid in a vertical asymmetric channel. Additionally, the study includes an analysis 
of entropy to quantify irreversibilities and thermodynamic effectiveness. This improved our understanding of the ways in which fluid 
friction, magnetic field, solid volume fraction, and nanoparticle aggregation affect the system’s performance. This article is structured 
in the following manner: Section two, presents mathematical modeling following the introduction. In addition to modeling the 
governing equations through conservation laws, the thermophysical characteristics of the nanofluid are also explained in detail. 
Section three provides the expression for the volumetric production rate in both fixed and wave frames, and its conversion to 
dimensionless form. Section four details the numerical scheme. Section five, offers a graphical analysis of physical quantities versus 
various parameters. Finally, significant observations are included in Section 6. 

2. The mathematical model 

Before introducing the mathematical model, the subsequent assumptions are taken into account.  

1. Nanofluid is Newtonian and incompressible.  
2. The flow of the fluid is laminar, fully developed, steady and two-dimensional.  
3. The magnetic field is uniformly applied normally to the flow of the channel.  
4. The channel is vertical.  
5. The effect of the gravity and the pressure gradient are considered.  
6. The induced magmatic field is not considered. 
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We examine the mixed convection behavior of a dissipative nanofluid in a flexible, asymmetrical vertical channel with wavy walls, 
focusing on the influence of nanoparticles (NPs) aggregation (agg.), viscous dissipation, and magnetic heating. The rectangular co
ordinates system (X∗,Y∗) is defined in a manner that the length of the channel is alinged with X∗− axis and width of the channel w1+w2 
is along the Y∗− axis (see Fig. 1). The movement of nanofluid inside the wavy channel is induced by a sinusoidal wave transmitting 
with velocity c along the deformable walls of the channel. The wavelength of the propagating waves along the channel is supposed to 
be λ whereas, the amplitudes at the right and left wall are supposed to be a1 and a2 respectively. 

The geometry of the flexible boundaries of the channel are formally described through mathematical expressions as [24]. 
⎧
⎪⎪⎨

⎪⎪⎩

Y∗ = H∗
1(X

∗, t∗) = w1 + cos
(

2π
λ
(X∗ − ct∗)

)

a1, Right Wall

Y∗ = H∗
2(X

∗, t∗) = − w2 +

(

− cos
(

2π
λ
(X∗ − ct∗) + φ

)

a2

)

Left Wall
(1)  

Here φ shows the phase difference and t∗ represents time. Further, w1,w2, a1, a2 and φ satisfy a2
1 + a2

2 + 2a1a2 cos φ ≤ (w1 + w2)
2
. The 

rectangular components of velocity with respect to the stationary frame are U∗(X∗,Y∗, t∗) and V∗(X∗,Y∗, t∗). The temperature of the 
right and left walls of the channel is supposed to be constant and respectively denoted by T0 and T1. Further, the applied magnetic 
force B→= (0,B0, 0) is oriented normal to X∗− axis. The set governing equations relative to the stationary frame are [21,22,30] 

∂U∗

∂X∗
+

∂V∗

∂Y∗
= 0, (2)  

ρnf

(
∂U∗

∂t∗
+ U∗∂U∗

∂X∗
+ V∗∂U∗

∂Y∗

)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−
∂P∗

∂X∗
+ μnf

(
∂2U∗

∂Y∗2 +
∂2U∗

∂X∗2

)

+g(ρβ)nf (T
∗ − To) − σnf B2

oU∗

(3)  

ρnf

(
∂V∗

∂t∗
+U∗∂V∗

∂X∗
+V∗∂V∗

∂Y∗

)

= −
∂P∗

∂Y∗
+ μnf

(
∂2V∗

∂Y∗2 +
∂2V∗

∂X∗2

)

(4)  

∂T∗

∂t∗
+V∗∂T∗

∂Y∗
+

∂T∗

∂X∗
U∗ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
(
ρcp
)

nf

knf

(
∂2T∗

∂Y∗2 +
∂2T∗

∂X∗2

)

+
σnf B2

o(
ρcp
)

nf

U∗2

+
μnf

(
ρcp
)

nf

(

2
(

∂U∗

∂X∗

)2

+ 2
(

∂V∗

∂Y∗

)2

+

(
∂U∗

∂Y∗
+

∂V∗

∂X∗

)2
) . (5) 

Fig. 1. Geometric depiction of the model for nanofluid flow.  
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The Galilean transformation equations [24] for time, space coordinates, and velocity components are 
(

X
Y

)

=

(
X∗ − ct

Y∗

)

, (t)= (t∗),
(

U
V

)

=

(
U∗ − c

V∗

)

,

(
P
T

)

=

(
P∗

T∗

)

. (6) 

Here, (X,Y) represents space coordinates relative to the inertial wave frame, (U,V) shows the velocity components relative to the 
moving inertial frame, t is the time in the moving inertial frame. Further t = t∗ because due to employment classical physics. In this 
context, time is regarded as an invariant entity; hence, the time observed in both stationary and moving frames (specifically, the wave 
frame) will exhibit identical characteristics. Using Eq. (6), Eqs. (2)–(5) take the following form: 

∂U
∂X

+
∂V
∂Y

= 0, (7)  

ρnf

(

U
∂U
∂X

+ V
∂U
∂Y

)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−
∂P
∂X

+ μnf

(
∂2U
∂Y2 +

∂2U
∂X2

)

+g(ρβ)nf (T − T0) − σnf (T)B2
0(U + c),

(8)  

ρnf

(

U
∂V
∂X

+ V
∂V
∂Y

)

= −
∂P
∂Y

+ μnf

(
∂2V
∂X2 +

∂2V
∂Y2

)

, (9)  

U
∂T
∂X

+V
∂T
∂Y

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

μnf
(
ρcp
)

nf

(

2
(

∂U
∂X

)2

+ 2
(

∂V
∂Y

)2

+

(
∂U
∂Y

+
∂V
∂X

)2
)

+
σnf B2

0(
ρcp
)

nf

(U + c)2
+

knf
(
ρcp
)

nf

(
∂2T
∂X2 +

∂2T
∂Y2

) , (10)  

Now, the non-dimensionalized variables are being introduced. 

(
X

Y

)

=

⎛

⎜
⎜
⎜
⎝

X
λ
Y
w1

⎞

⎟
⎟
⎟
⎠
,

(
U

V

)

=

⎛

⎜
⎜
⎜
⎝

U
c
V
τc

⎞

⎟
⎟
⎟
⎠
, τ =

w1

λ
,

(
P

T

)

=

⎛

⎜
⎜
⎝

w2
1P

λcμ0

Θ ΔT + To

⎞

⎟
⎟
⎠,ΔT = T1 − T0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (11)  

When Eq. (11) is substituted into equations 7–10, we obtained: 

∂U
∂X

+
∂V
∂Y

= 0, (12)  

Λ1Reτ
(

U
∂U
∂X

+V
∂U
∂Y

)

=

⎧
⎪⎨

⎪⎩

−
∂P
∂X

+ Λ2

(
∂2U
∂Y2 + τ2∂2U

∂X2

)

+GrΛ3Θ − Λ4M2
h(U + 1),

(13)  

Λ1Reτ3
(

U
∂V
∂X

+V
∂V
∂Y

)

= −
∂P
∂Y

+ τ2Λ2

(
∂2V
∂Y2 + τ2∂2V

∂X2

)

, (14)  

RePrτΛ5

(

U
∂Θ
∂X

+V
∂Θ
∂Y

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Λ6

(
∂2Θ
∂Y2 + τ2∂2Θ

∂X2

)

+Pr EcΛ2

(((
∂V
∂Y

)2

+

(
∂U
∂X

)2
)

2τ2 +

(
∂U
∂Y

+
∂V
∂X

τ2
)2
)

+Λ4M2
hEc Pr (U + 1)2

.

(15)  

Here (X,Y) and (U,V) correspondingly denotes dimensionless space coordinates and velocity components, whereas Θ shows the 
dimensionless temperature of the nanofluid. Whereas the symbols 〈Λ1,Λ2,Λ3,Λ4,Λ5,Λ6〉 are defines as given below 
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Λ1 =
ρnf

ρbf
,Λ2 =

μnf

μbf
,Λ3 =

(ρβ)nf

(ρβ)bf
,

Λ4 =
σnf

σbf
,Λ5 =

(
ρcp
)

nf
(
ρcp
)

bf

,Λ6 =
knf

kbf
.

(16)  

By introducing a stream function ψ = ψ/cw1 with U =
∂ψ
∂Y, V = −

∂ψ
∂X and using a long wave length approximation (τ ≪ 1), Eqs. 13–15 

take the following form 

Λ2
∂2

∂Y2

(
∂ψ
∂Y

)

+GrΛ3Θ − Λ4M2
h

(
∂ψ
∂Y

+1
)

=
∂P
∂X

(17)  

∂P
∂Y

=0, (18)  

∂2Θ
∂Y2Λ6 +Pr Λ2Ec

(
∂2ψ
∂Y2

)2

+Λ4M2
hEc Pr

(
∂ψ
∂Y

+ 1
)2

=0. (19) 

As given below, the momentum and heat equations are transformed when the pressure gradient is eliminated. 

Λ2
∂3

∂Y3

(
∂ψ
∂Y

)

+GrΛ3
∂Θ
∂Y

− Λ4M2
h

(
∂2ψ
∂Y2

)

= 0 (20)  

Λ6
∂2Θ
∂Y2 +Pr EcΛ2

(
∂2ψ
∂Y2

)2

+Λ4M2
hEc Pr

(
∂ψ
∂Y

+ 1
)2

=0. (21)  

Here 

Gr=
(ρβ)bf gΔTw2

1

cμbf
(Grashof number), Ec=

c2
(
cp
)

bf ΔT
(Eckert number),

M2
h =

B2
0w2

1σbf

μbf
(magnetic parameter) and Pr=

(μcp

k

)

bf
(Prandtl number).

The unit less boundary conditions are 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψ = +
F
2
,
∂ψ
∂y

= − 1,Θ = 0 at ω1(X) = 1 + a cos(2πX),

ψ = −
F
2
,
∂ψ
∂y

= − 1,Θ = 1 at ω2(X) = − d − b cos(2πX + φ).
(22)  

Table 1 
Presents the correlations regarding the thermophysical properties of nanofluid [52,53].  

Properties without aggregation with aggregation 

Thermal
conductivity knf = kbf

{(
kp + 2kbf

)
+ 2
(
kp − kbf

)
Φ

(
kp + 2kbf

)
−
(
kp − kbf

)
Φ

}

, knf = kbf

{(
ka + 2kbf

)
+ 2
(
ka − kbf

)
Φa

(
ka + 2kbf

)
−
(
ka − kbf

)
Φa

}

,

Heat
capacitance 

(
ρcp
)

nf =

{
(1 − Φ)

(
ρcp
)

bf
+Φ
(
ρcp
)

p 

(
ρcp
)

nf =

{
(1 − Φa)

(
ρcp
)

bf
+Φa

(
ρcp
)

bf

(
ρcp
)

p 

Electric
conductivity 

σnf

σbf
= 1 +

3Φ(σ − 1)
2 + σ − Φ(σ − 1)

where

σ =
σp

σbf 

σnf

σbf
= 1 +

3(σ − 1)Φa

2 + σ − (σ − 1)Φa

where

σ =
σp

σbf 

Density ρnf

ρbf
= (1 − Φ)+ Φ

ρp

ρbf 

ρnf

ρbf
= (1 − Φa)+ Φa

ρp

ρbf 

Dynamic
viscosity 

μnf

μbf
=

1
(1 − Φ)

2.5 
μnf

μbf
=

⎛

⎜
⎜
⎜
⎝

1 −

Φ
(

ra

rp

)3− D

Φm

⎞

⎟
⎟
⎟
⎠

− [ε] Φm 

Thermal expansion coefficient 
(ρβ)nf =

[

Φ
(ρβ)p

(ρβ)bf
+ (1 − Φ)

]

(ρβ)bf  (ρβ)nf =

[

Φa
(ρβ)p

(ρβ)bf
+ (1 − Φa)

]

(ρβ)bf   
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In boundary conditions (22) here unit less time-mean flow rate F (observed in wavy frame) and χ (observed in stationary frame) exhibit 
a relationship defined by the following equation 

F= χ − d − 1. (23)  

2.1. Modeling the features of nanofluids with nanoparticles aggregation 

The precise modeling of the characteristics of TiO2/H2O nanofluid (NF) can be achieved through the kinematics of nanoparticle 
aggregation. In their study, Chen et al. [52] provided a comprehensive description of the models that were employed for the TiO2/EG 
NF system, considering the impact of nanoparticle aggregation. The theoretical models and correlations exhibited a high level of 
concurrence with the experimental findings. Table 1 presents a complete review and comparison of standard NF models that do not 
consider the impact for the influence of NP aggregation alongside the models introduced by Chen et al. [52]. 

2.1.1. Solid volume fraction with aggregation effect 
The existence of non-uniformity in the distribution of NPs within aggregate (agg.) structures implies that the density of NPs changes 

in accordance with a power law i.e. density of NPs changes with the radial position. The determination of the solid volume fraction of 
NP agg. Denoted as Φa,is calculated through the relationship outlined below [52,53] 

Φa =Φ
(

ra

rp

)3− D

(24)  

Within the given framework, the symbol D represents the constant fractal index, while the symbol Φ denotes the solid volume fraction 
of isolated nanoparticles (NPs). Additionally, ra signifies the radius of NP agg., and rp corresponds to the radius of isolated NPs. Chen 
et al. [39] have provided noteworthy findings regarding the appropriate values for D (the fractal index) and ra (radius of nanoparticle 
(NP) agg.). Specifically, they have documented that D has a value of 1.8, while ra is equal to 3.34 times the radius of individual 
nanoparticles 

(
rp
)
.. 

2.1.2. Effective viscosity with NPs aggregation 
The accurate determination of the viscosity of TiO2/H2O nanofluids is achieved through the modification of the Krieger-Dougherty 

model, which considers the presence of nanoparticle aggregates. The updated model effectively calculates the effective viscosity of 
TiO2/H2O with aggregates of nanoparticles. Presented below is the new conceptual framework for the characterization of viscosity 
[52,53]. 

μnf

μbf
=

(

1 −
Φa

Φm

)− [ε] Φm

(25)  

Within the present framework, the variable [ε] denotes the intrinsic viscosity, assuming a precise numerical value of [ε] = 2.5, whereas 
Φm is assigned a value of 0.605. 

2.1.3. Effective thermal conductivity with nanoparticles aggregation 
The conventional Maxwell equation is typically used to evaluate the thermal conductivity of different nanofluids (NFs) or ho

mogeneous mixtures 

knf = kbf

{(
kp + 2kbf

)
+ 2Φ

(
kp − kbf

)

(
kp + 2kbf

)
− Φ

(
kp − kbf

)

}

. (26) 

The symbols kbf , knf and kp and for the thermal conductivities of the working fluid, nanofluid (NF), and nanoparticles (NPs), 
respectively. Nevertheless, the previously indicated traditional Maxwell model fails to take into account the impact of NPs agg. on 
thermal conductivity. The Bruggeman model should be incorporated into the Maxwell model, as suggested by Chen et al. [52]. This 
will provide an updated model that takes NPs aggregation into account. The thermal conductivity of NPs agg. is estimated using the 
model documented by Bruggeman. According to Chen et al. [52] the following is the representation of the modified Maxwell model 
that takes thermal conductivity with NPs aggregates 

knf = kbf

{(
ka + 2kbf

)
+ 2Φa

(
ka − kbf

)

(
ka + 2kbf

)
− Φa

(
ka − kbf

)

}

. (27) 

The thermal conductivity of nanofluid, aggregates of TiO2 nanoparticles (NPs), and water are denoted by knf , ka and kbf . 
Furthermore, Chen et al. [52] reported that the Bruggeman model determines the thermal conductivity of NPs aggregates in the 
following way 

ka =0.25

[

(3Φi − 1)
kp

kf
+(3(1 − Φi) − 1)+

{(

(3Φi − 1)
kp

kf
+ (3(1 − Φi) − 1)

)2

+ 8
kp

kf

}0.5]

, (28)  

Here, Φi =

(
ra
rp

)D− 3
. Further, the quantitative data regarding the thermophysical characteristics of water (H2O) and TiO2 nanoparticles 
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can be seen from Table 2. 

3. Minimization of entropy generation 

The phenomenon of entropy formation in a flow of dissipative nanofluid within a wavy channel, considering the influence of 
magnetic dissipation is expressed as [42–46]. 

Ṡ
⌢ ʹ́ʹ

Gen =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

knf

T∗2

((
∂T∗

∂X∗

)2

+

(
∂T∗

∂Y∗

)2
)

+ U∗2σnf

T∗
B2

o

+
2μnf

T∗

((
∂U∗

∂X∗

)2

+

(
∂V∗

∂Y∗

)2

+
1
2

(
∂V∗

∂X∗
+

∂U∗

∂Y∗

)2
)

,

(29) 

Utilizing the Galilean transformations defined in (6), the expression (29) becomes 

Ṡ
ʹ́ʹ
GEN =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

knf

T2

((
∂T
∂X

)2

+

(
∂T
∂Y

)2
)

+
σnf

T
B2

o(U + c)2

+
μnf

T

(

2
(

∂U
∂X

)2

+ 2
(

∂V
∂Y

)2

+

(
∂U
∂Y

+
∂V
∂X

)2
)

.

(30)  

By using Eq. (11), the entropy generation number (Ns) in an inertial moving frame takes the following form 

Ns=
Ṡʹ́ʹ

GEN
(
Ṡʹ́ʹ

GEN
)

0

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ6

(Θ + θd)
2

((
∂Θ
∂Y

)2

+ τ2
(

∂Θ
∂X

)2
)

+Λ4
M2

h Pr Ec
(Θ + θd)

(U + 1)2

+
2 Pr Ec
(Θ + θd)

(

τ2

((
∂V
∂Y

)2

+

(
∂U
∂X

)2
)

+
1
2

(
∂U
∂Y

+
∂V
∂X

τ
)2
)

.

(31) 

Introducing ψ(X,Y) in such a way that U =
∂ψ
∂Y, V = −

∂ψ
∂X and utilizing long wave length approximation (τ ≪ 1), (31) takes the 

following form 

Ns =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Λ6

(Θ + θd)
2

(
∂Θ
∂Y

)2

+ Λ4
M2

h Pr Ec
(Θ + θd)

(
∂ψ
∂Y

+ 1
)2

+
Pr Ec

(Θ + θd)

(
∂2ψ
∂Y2

)2
. (32) 

The notation 
(
Ṡ

ʹ́ʹ
GEN
)

0 and θd used in (32) respectively stand for characteristic entropy generation and temperature difference 
parameter and defines as follows: 

(
Ṡʹ́ʹ

GEN
)

0 =
kbf

w2
1
, θd =

T0

ΔT
. (33)  

4. Numerical Strategy: differential quadrature method (DQM) 

Using the differential quadrature method [54–56], the subsequent system of dimensionless nonlinear differential equations is 
numerically solved. 

Table 2 
Numerical values of thermophysical properties.   

σ(Ω.m)
− 1 ρ

(
kgm− 3) k(W /KgK) cp(W /mK) β(1 /K)

Water (H2O) 0.05 997.1 0.613 4179 21× 10− 5 

TiO2 2.38× 106 4250 8.9538 686.2 1.05× 10− 5  
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SNL(X,Y)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ = −
F
2
,
∂ψ
∂Y

= − 1,Y = ω2(X),

Λ2
∂3

∂Y3

(
∂ψ
∂Y

)

+ GrΛ3
∂Θ
∂Y

− Λ4M2
h

(
∂2ψ
∂Y2

)

= 0

ψ =
F
2
,
∂ψ
∂Y

= − 1 at Y = ω1(X),

Θ = 1 at Y = ω2(X),

Λ6
∂2Θ
∂Y2 + Pr EcΛ2

(
∂2ψ
∂Y2

)2

+ Λ4M2
hEc Pr

(
∂ψ
∂Y

+ 1
)2

= 0

Θ = 0, at Y = ω1(X),

(34) 

To facilitate DQM implementation, the following additional transformations are used [54]. 
⎧
⎨

⎩

Y = ξ(ω1(X) − ω2(X)) + ω2(X),
ψ(X,Y) = ψ̃(X, ξ) + ψ(X,ω2(X) + ξ(ω1(X) − ω2(X))),
Θ(X,Y) = T̃(X, ξ) = T(X,ω2(X) + ξ(ω1(X) − ω2(X))),

(35) 

Keeping the transformations (35) in mind, the nth-order derivative of ψ(X,Y) and T(X,Y) can be represented as [54] 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂nψ(X,Y)
∂Yn =

1
(ω1(X) − ω2(X))n

∂nψ̃(X, ξ)
∂ξn ,

∂nΘ(X,Y)
∂Yn =

1
(ω1(X) − ω2(X))n

∂nT̃(X, ξ)
∂ξn .

(36) 

Based on (35) and (36), we can express the nonlinear system (SNL(X, ξ)) as follows 

SNL(X, ξ)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ̃(X, ξ = 0) = −
F
2
,

(
∂ψ̃
∂ξ

)

ξ=0
= − Δ,where Δ = ω1(X) − ω2(X),

Lψ̃ (ψ̃, T̃) + Nψ̃(ψ̃ , T̃) = 0,

ψ̃(X, ξ = 1) =
F
2
,

(
∂ψ̃
∂ξ

)

ξ=1
= − Δ,where Δ = ω1(X) − ω2(X),

T̃(X, ξ = 0) = 1,

LT̃(ψ̃ , T̃) + NT̃(ψ̃ , T̃) + Λ4M2
hEc Pr = 0,

T̃(X, ξ = 1) = 0,

(37)  

In the above system (SNL(X, ξ)), the linear Lψ̃ (ψ̃ , T̃), LT̃(ψ̃, T̃) and nonlinear Nψ̃ (ψ̃, T̃), NT̃(ψ̃ , T̃) parts are defined as follows: 

Lψ̃(ψ̃ , T̃)=
Λ
Δ4

(
∂4ψ̃
∂4ξ

)

+
GrΛ3

Δ
∂T̃
∂ξ

−
Λ4M2

h

Δ2

(
∂2ψ̃
∂ξ2

)

, (38)  

LT̃(η, χ)=Λ6

Δ2
∂2T̃
∂ξ2 + Λ4M2Ec Pr

(
2
Δ

∂ψ̃
∂ξ

)

, (39)  

Nψ̃(X, ψ̃)=0 (40)  

NT̃(X, ξ)=
Pr EcΛ2

Δ4

(
∂2ψ̃
∂ξ2

)2

+
Λ4M2

h Pr Ec
Δ2

(
∂ψ̃
∂ξ

)2

. (41)  

With the help of Eqs. (35) and (36), Eq. (32) take the following form: 

Ns(X, ξ)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Λ6

Δ2(T̃ + θd)
2

(
∂T̃
∂ξ

)2

+ Λ4
M2

h Pr Ec
(T̃ + θd)

(
1
Δ

∂ψ̃
∂ξ

+ 1
)2

+

Br
Δ4(T̃ + θd)

(
∂2ψ̃
∂ξ2

)2
(42) 

Moreover, as mentioned earlier, the longitudinal pressure gradient can be formulated in the following manner 

M.I. Afridi et al.                                                                                                                                                                                                        



Case Studies in Thermal Engineering 61 (2024) 105054

10

∂P̃
∂X

=Λ2

(
1

Δ3
∂3ψ̃
∂ξ3

)

+ GrΛ3T̃ − Λ4M2
h

(
1
Δ

∂ψ̃
∂ξ

+ 1
)

(43)  

Here 

P(X,Y)= P̃(X, ξ)=P(X, ξ(ω1(X) − ω2(X) +ω2(X))). (44)  

Below is the non-uniform discretization of the computational domain [0,1]. 

ξi =
1
2

(

1+ cos
(
(1 − i)π
N − 1

))

. (45) 

Here, N displays the overall number of Gauss-Lobatto mesh points and 1 ≤ i ≤ N. In discrete form, the derivatives of ψ̃(X, ξ) and 
T̃(X, ξ) at grid points ξi are defined as given below 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂pψ̃
∂ξp

)

ξ=ξi

=
∑N

j=1
D(p)

ij ψ̃(X, ξ = ξi) =
∑N

j=1
D(p)

ij ψ̃ j(X), 1 ≤, i, j ≤ N,

∂pT̃
∂ξp

)

ξ=ξi

=
∑N

j=1
D(p)

ij T̃(X, ξ = ξi) =
∑N

j=1
D(p)

ij T̃j(X), 1 ≤, i, j ≤ N.

(46)  

here, D(p)
ij shows quadrature weighting coefficients. Following Nayak et al. [41], the weighted coefficients can be written as given 

below 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D(p)
ij =

ΠN
k=1,k∕=i (ξi − ξk)

(
ξi − ξj

)
ΠN

k=1,k∕=j
(
ξj − ξk

), for m = 1, i ∕= j and 1 ≤ i, j ≤ N,

D(p)
ij = n

(

D(p− 1)
ii D(1)

ij −
D(p− 1)

ij
(
ξi − ξj

)

)

, for m ≥ 2, i ∕= j and 1 ≤ i, j ≤ N,

M(p)
ij = −

∑N

k=1,j∕=i
M(p)

ij for i = j,

(47) 

By substituting the discretized representation of both the variables and its corresponding derivatives within system (37), the 
resultant discretized system is obtained as follows 

SNL(X, ξi)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ̃ i(X) + F

/

2 = 0,
∑N

j=1
D(1)

ij ψ̃ j(η) + Δ = 0,when i = 1,

Lψ̃ i
(ψ̃ i(X), T̃i(X)) + Nψ̃ i

(ψ̃ i(X), T̃i(X)) = 0, for 3 ≤ i ≤ N − 2,

ψ̃ i(η) −
F
2
= 0,

∑N

j=1
D(1)

ij ψ̃ j(X) + Δ = 0,when i = N,

T̃i(X) = 1,when i = 1,

LT̃i
(ψ̃ i(X), T̃i(X)) + NT̃i

(ψ̃ i(X), T̃i(X)) + Λ4M2
hEc Pr = 0, for 2 ≤ i ≤ N − 1

T̃j(X) = 0,when i = N.

(48)  

in which 

Lψ̃ i
(ψ̃ i(X), T̃i(X)) =

Λ
Δ4

∑N

j=1
D(4)

ij ψ̃ j(X) +
GrΛ3

Δ
∑N

j=1
D(1)

ij T̃j(X) −
Λ4M2

h

Δ2

(
∑N

j=1
D(2)

ij ψ̃ j(X)

)

, (49)  

LT̃i
(ψ̃ i(X), T̃i(X)) =

Λ6

Δ2

∑N

j=1
D(2)

ij T̃j(X) + Λ4M2Ec Pr

(
2
Δ
∑N

j=1
D(1)

ij ψ̃ j(X)

)

, (50)  

Nψ̃ i
(ψ̃ i(X), T̃i(X)) =0 (51)  
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NT̃i
(ψ̃ i(X), T̃i(X)) =

Pr EcΛ2

Δ4

(
∑N

j=1
D(2)

ij ψ̃ j(X)

)2

+
Λ4M2

h Pr Ec
Δ2

(
∑N

j=1
D(1)

ij ψ̃ j(X)

)2

. (52) 

We have discretized nonlinear system SNL(X, ξi) and resulting into a system of 2N nonlinear algebraic equations. Therefore, we 
utilized the Newton-Raphson Method to solve the discretized system iteratively. Furthermore, the numerical calculation of the 
pressure gradient and entropy generation can be conducted as outlined below: 

∂P̃
∂X

=Λ2

(
1

Δ3

∑N

j=1
D(3)

ij ψ̃ j(X)

)

+ GrΛ3T̃i(X) − Λ4M2
h

(
1
Δ
∑N

j=1
D(1)

ij ψ̃ j(X) +1

)

(53)  

Ns(X, ξi)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ6

Δ2(T̃i(X) + θd)
2

(
∑N

j=1
D(1)

ij T̃j(X)

)2

+

Λ4
M2

h Pr Ec
(T̃i(X) + θd)

(
1
Δ
∑N

j=1
D(1)

ij ψ̃ j(X) + 1

)2

+

Br
Δ4(T̃i(X) + θd)

(
∑N

j=1
D(2)

ij ψ̃ j(X)

)2

,

(54) 

The simulation in MATLAB is conducted through the application of the generalized differential quadrature method. The flow chart 
as depicted in Fig. 2 outlines the essential steps of the GDQM. 

5. Results and discussion 

The aim of this section is to investigate the impact of pertinent factors including the Eckert number Ec {0.0,0.05,0.1}, solid volume 
fraction Φ{0.01,0.02,0.03}, Grashof number Gr{1,2,3}, magnetic parameter Mh {0.2,1.2, 2.2} and temperature difference parameter 
θd {0.5,1.5, 2.5} on velocity U(X,Y), temperature Θ(X,Y), entropy generation Ns(X,Y) heat transfer rate and pressure gradient dP

dX. It is 

Fig. 2. Flow chart, utilization of GDQM.  
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noted that as each flow parameter is altered, the remaining parameters are held constant as Mh = 1.5, Gr = 2.0, X = 0.1, Ec = 0.05, 
Φ = 0.04 and θd = 1.5. Prandtl number Pr for the base fluid, water, has a fixed value of 6.83 throughout the analysis, Moreover, values 
of the parameters related to channel geometry namely, amplitudes of the waves, channel width and phase difference are also kept fixed 
at a = 0.5, b = 0.5, d = 0.9 and φ = π/4. A comparative analysis of key quantities—including velocity, pressure gradient, temperature, 
trapping phenomena, heat transfer, and volumetric entropy generation rates—has been conducted for the peristaltic flow of nano
fluids, both with and without nanoparticle aggregation. 

5.1. Effects of nanoparticles aggregation (NPs agg.) 

Fig (3)-(23) show that nanoparticle aggregation significantly affects heat transfer rate, pressure gradient, velocity, temperature, 
and entropy generation within the fluid. Specifically, Fig (3)-(5) reveal that velocity profiles in the central region of the channel 
decrease with nanoparticle aggregation. Physically, nanofluids exhibit elevated viscosity on account of the scattered nanoparticles, 
whose presence augments resistance to flow and accordingly slows the fluid motion. Fig (6) (8) point out that the thermal profile is 
higher with nanoparticle aggregation because of high effective thermal conductivity. Additionally, Fig (9)-(12) demonstrate that 
entropy generation is higher in nanofluids with aggregated nanoparticles compared to those without aggregation (see Fig. 7). 

5.2. Axial pressure gradient 

Fig. 3 depicts the effect of the solid volume fraction (Φ) on the axial pressure gradient, showing that the magnitude of dP
dX in absolute 

sense is highest for nano fluid without aggregation. Additionally, this magnitude enhances as solid volume fraction increases. Fig. 4 

depicts the change in the axial pressure gradient 
(

dP
dX

)

with change in Hartman number (Mh) and it is noticed that the absolute strength 

of dP
dX intensifies as the Hartman number increases. Further, the magnitude of dP

dX in absolute sense is lowest with nanoparticles ag
gregation. Figs. 5 and 6 respectively depict the influence of Grashof (Gr) and Eckert number on dP

dX, indicating that the magnitude of dP
dX 

decline with rising magnitudes of Grashof and Eckert number. It is significant to note that the pressure gradient is higher for the 
nanofluid when considering the effect of nanoparticle aggregation compared to the nanofluid without accounting for this effect. 

5.3. Trapping phenomena 

Fig. 7 (a) and (b) respectively show how the streamlines vary with increasing magnetic parameter by considering the nanoparticles 
aggregation and without accounting for this effect. When the strength of the magnetic field is increased, the size of the trapped bolus 
reduces. This occurs, because the larger field is more effective in contracting the bolus, an effect driven by the relative dynamics of the 
flow. In addition, under the influence of the magnetic force, more fluid tends to flow into the right side of channel’s center, as before. 

5.4. Velocity profiles 

The influence of the parameters (Φ,Mh,Gr, Ec) on velocity profiles is demonstrated in Figs. (8)-(11) respectively. An elevated solid 
volume fraction, as illustrated in Fig. 8, leads to a decrement in the velocity distribution at the central region of the channel. The 
velocity is declining at the center and upsurge near the deformable walls with enhancing the magnetic number (Mh) as shown in Fig. 9. 
The intensified magnetic field applies a resistance force on the fluid, effectively diminishing the fluid velocity. The Lorentz forces act in 
opposition to the flow, resulting in increased resistance and decreased velocity in the central region of the channel. At the center, the 
nanofluid with aggregation has greater velocity as compared to the nanofluid without the agg. From Fig. 10, the velocity of nanofluid 
upsurge at the center and near the left wall with growing values of Grashof number (Gr). The decline in velocity profile is observed 
towards the right wall. At the center and towards the left wall, lower velocity is observed corresponding to the nanofluid without the 
nanoparticle’s aggregation. Fig. 11 establishes that as the Eckert number (Ec) rises, the velocity declines towards the walls and rises at 
the center. The thermal conductivity enhances significantly with the increment in solid volume fraction, resulting in an improvement 
in the temperature profile as illustrated in Fig. 12. Moreover, it is noteworthy to observe that the influence of solid volume fraction is 

Fig. 3. Change of axial pressure gradient dP
dX with Φ (solid volume fraction)..  
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more conspicuous in nanofluids with NPs aggregation in comparison to those without NPs aggregation. 

5.5. Temperature profiles 

Temperature rise is noticed as the magnetic parameter values increase, as depicted in Fig. 13. Fig. 14 shows temperature profiles 
boost with a rise in Grashof number. This is because the numerator of the Grashof number includes the term ΔT that represents the 
temperature difference between the two deformable boundaries. Increasing this temperature difference results in a higher Grashof 
number, which consequently enhances the temperature profile of the nanofluid. The impact on the temperature profile with Eckert 
number is illustrated in Fig. 15, which demonstrates that a greater Eckert number causes the temperature profile to rise. This behavior 
is explained by the direct correlation between the transformation of kinetic energy into thermal energy and the Eckert number. 

Fig. 4. Change of axial pressure gradient dP
dX with Mh (Hartman number).  

Fig. 5. Change of axial pressure gradient dP
dX with Gr (Grashof number)..  

Fig. 6. Change of axial pressure gradient dP
dX with Ec (Eckert number)..  
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5.6. Heat transfer rate 

(Figs. 16-18) demonstrate the impact of Hartman, Grashof and Eckert number on rate of heat transfer at the right wall of channel 
respectively. It is noticed that the rate of heat transfer is higher when considering the aggregation of nanoparticles (NPs) as compared 
to without accounting for this effect. Moreover, the heat transfer rate upsurges with higher values of the magnetic and Eckert numbers 
but decreases with an increasing Grashof number. The heat transfer rate is further rise with the rise in the solid volume fraction Φ of the 
nanoparticles. 

5.7. Entropy generation number 

Fig. 19 depicts the change in entropy generation Ns across various values of Φ. A significant rise in Ns is observed with an increase 
in Φ. Fig. 20 establishes that as the magnetic parameter increases, there is an enhancement in entropy generation, particularly 
noticeable towards the walls of the channel. This phenomenon can be attributed to the escalation in Joule heating as the magnetic 
parameters rise, consequently resulting in amplified entropy production. Figs. 21 and 22 respectively show the influence of Grashof 
and Eckert numbers on entropy generation. It is noticed that entropy generation upsurge with rising values of Eckert and Grashof 
number. Further, the effects are noticeable close to the deformable walls of the channel. Form Fig. 23, the reduction in entropy 

Fig. 7a. Streamlines with nanoparticle aggregation.  

Fig. 7b. Streamlines without nanoparticle aggregation.  
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production is noted with growing the temperature difference parameter (θd) and this is because the denominator of the temperature 
difference parameter consists of the term ΔT, which signifies the temperature difference between the two deformable boundaries. 
Reducing this temperature difference results in an elevated θd and, leads to reduce the entropy generation. 

6. Concluding Remarks 

The main findings of this analysis are. 

Fig. 8. Change of velocity U(X,Y) with Φ (solid volume fraction)..  

Fig. 9. Change of velocity U(X,Y) with Mh (Hartman number).  

Fig. 10. Change of velocity U(X,Y) with Gr (Grashof number)..  
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• Impact of Nanoparticle Aggregation: Nanoparticle aggregation significantly affects the pressure gradient, velocity, heat transfer 
rate, temperature, and entropy production within the fluid. Aggregation leads to increased viscosity, reduced fluid velocity, and 
altered thermal and entropy profiles.  

• Fluid Trapping: Aggregation results in a reduction in fluid trapping, leading to smaller bolus sizes compared to scenarios without 
nanoparticle aggregation. 

Fig. 11. Change of velocity U(X,Y) with Ec (Eckert number)..  

Fig. 12. Change of temperature Θ(X,Y) with Φ (solid volume fraction)..  

Fig. 13. Change of temperature Θ(X,Y) with Mh (Hartman number).  

M.I. Afridi et al.                                                                                                                                                                                                        



Case Studies in Thermal Engineering 61 (2024) 105054

17

• Pressure Gradient: The pressure gradient decreases with rising Grashof and Eckert numbers. However, increased magnetic field 
strength and higher solid volume fractions of nanoparticles raise the pressure gradient.  

• Temperature Profile: Fluid temperature rises with increases in the Grashof number, magnetic parameter, Eckert number, and solid 
volume fraction of NPs. 

Fig. 14. Change of temperature Θ(X,Y) with Gr (Grashof number)..  

Fig. 15. Change of velocity Θ(X,Y) with Ec (Eckert number)..  

Fig. 16. Change of heat transfer rate at η1 (right wall) with Mh (Hartman number).  
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• Heat Transfer and Entropy Production: When comparing nanofluids containing aggregated nanoparticles to those without, the 
former exhibit increased heat transfer rates and entropy generation. Additionally, entropy production can be reduced by decreasing 
fluid friction and increasing the temperature difference parameter. 
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