REVIEW ARTICLE | DECEMBER 16 2024

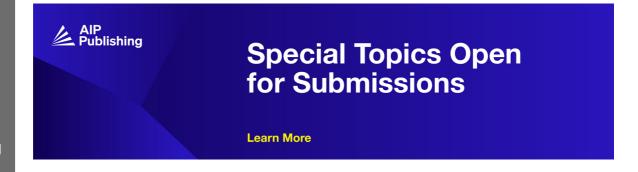
Optimizing renewable energy systems: A comprehensive review of entropy generation minimization

Hossam A. Nabwey 🗷 📵 ; Muhammad Ashraf 🗓 ; Hajra Nadeem 🗓 ; A. M. Rashad 🗓 ; Ali J. Chamkha 👵

AIP Advances 14, 120702 (2024) https://doi.org/10.1063/5.0245560

Articles You May Be Interested In

Fuzzy logic, PSO based fuzzy logic algorithm and current controls comparative for grid-connected hybrid system


AIP Conf. Proc. (February 2017)

Analysis of seasonal exergy efficiency of an air handling unit

AIP Conf. Proc. (September 2017)

Triple-diffusive instabilities in Ellis fluid-saturated porous layers: Dynamics of oscillatory convection

Physics of Fluids (October 2024)

Optimizing renewable energy systems: A comprehensive review of entropy generation minimization

Cite as: AIP Advances 14, 120702 (2024); doi: 10.1063/5.0245560 Submitted: 29 October 2024 • Accepted: 29 November 2024 •

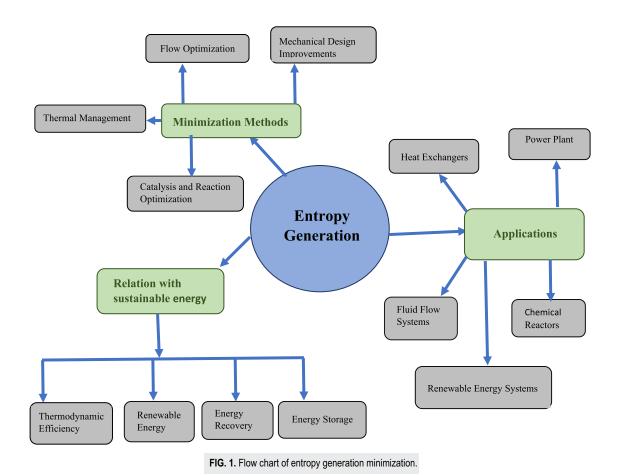
Published Online: 16 December 2024

AFFILIATIONS

- Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- ²Department of Basic Engineering Science, Faculty of Engineering, Menoufia University, Shebin El-Kom 32511, Egypt
- ³Department of Mathematics, University of Sargodha, Sargodha 10400, Pakistan
- Department of Mathematics, Faculty of Science, Aswan University, Aswan, Egypt
- Faculty of Engineering, Kuwait College of Science and Technology, Doha District 35004, Kuwait

ABSTRACT

This comprehensive literature review examines the key concepts of entropy generation minimization and its significant impact on the advancement of renewable energy systems. The study begins by introducing the fundamental principles of entropy generation and their relevance to thermodynamic processes. It emphasizes the critical role of reducing entropy production in enhancing the overall efficiency of energy conversion technologies. This review evaluates various approaches to identifying and mitigating irreversibility in renewable energy applications, including analytical methods, numerical simulations, and optimization strategies. It also explores how the principles of entropy generation minimization can be integrated into system design and operation to improve the performance of a wide range of renewable energy technologies, such as biomass conversion, wind turbines, solar photovoltaic systems, and geothermal energy. Furthermore, this review provides a thorough examination of the literature, spanning from classical theories to the latest innovations in thermodynamics and heat transfer. The novelty of this review lies in addressing the gap between entropy generation minimization and its application to renewable energy systems, thereby paving the way for future research and technological advancements in the field.


© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0245560

INTRODUCTION

This study employs entropy generation minimization as a method to improve the performance of energy systems, with a particular focus on renewable energy sources. The concept of minimizing entropy production is crucial as it aims to control the rate of irreversibility in a system, thereby optimizing its overall efficiency. Entropy generation minimization can be applied to various renewable energy sources, ranging from solar and wind energy to hydroelectric and geothermal power plants. The benefits of minimizing entropy generation in renewable energy systems include reduced energy losses, enhanced system performance, increased reliability, and cost saving. Low entropy generation is among the most effective strategies for improving the efficiency of alternative energy

producing systems. By reducing energy losses, minimizing entropy production enhances the viability of renewable energy systems while also contributing to cost reduction—an especially pertinent benefit as global energy consumption steadily shifts toward renewable resources. The usefulness of entropy generation minimization in renewable energy systems has been demonstrated in numerous studies. Figure 1 shows the flow chart of entropy generation with minimization methods, its relation with sustainable energy, and its application. Finite-size thermodynamics and finite-time thermodynamics represent a paradigm shift in thermodynamics, focusing on energy management by avoiding excessive losses while achieving high energy-use efficiency. One method for improving energy systems involves minimizing losses by linking traditional thermal practices with advanced thermodynamic principles, as discussed in

a) Author to whom correspondence should be addressed: eng_hossam21@yahoo.com

Ref. 2. Adopting a rigorous approach to maintain entropy generation low significantly enhances the operational efficiency of energy systems by reducing entropy production.³

The goal of entropy generation minimization is to reduce energy wastage and losses. Paramount emphasis is placed on improving power systems, as discussed in Ref. 4, which includes combining entropy generation minimization with efficiency enhancement strategies. Recent work in Ref. 5 introduces a novel approach to reducing entropy production in energy systems. This study elaborates on the underlying principles, the implementation process, and various applications of the concept in promoting sustainability, with the aim of improving energy performance and quality. The paper also examines ways to reduce energy losses in industrial settings, particularly in parallel heat exchangers within heat pipelines, aiming to optimize processes and eliminate unnecessary losses. In addition, it discusses the application of entropy generation minimization to improve the design of finned heat sinks, which facilitates better thermal control and significantly reduces energy wastage.7 A detailed investigation into exergy analysis, entropy generation minimization, and flow architecture is presented in Ref. 8, offering a comprehensive perspective on these principles and their interrelation for effective thermal system design. The study further explores methods to achieve minimal entropy generation

for internal flows under constant heat flux conditions, establishing the current velocity and hydraulic profile of river channels to minimize energy wastage and maximize heat transfer. 9 Research on counterflow heat exchanger geometry employs entropy generation minimization techniques to enhance thermal performance, improve energy efficiency, and reduce thermal irreversibility in the heat exchange process. 10 This approach, which contributes to sustainability, minimizes energy and waste, thereby reducing environmental impact.¹¹ For shell-and-tube heat exchangers, entropy generation minimization is identified as an effective design strategy. The use of genetic algorithms is highlighted as a means to further enhance thermal performance and minimize energy losses.¹² Multi-objective optimization of heat exchangers, focusing on thermal performance, cost reduction, and energy efficiency, integrates entropy generation minimization to enhance overall system sustainability. 13 Second-law analyses of absorption chillers demonstrate the importance of entropy generation in assessing system thermodynamics, identifying areas for improvement to boost productivity while minimizing environmental degradation.¹⁴ In the thermal decomposition of methane into hydrogen, genetic algorithms are employed to optimize reaction conditions, increasing conversion, selectivity, and yield while reducing energy waste. 15 The enhancement of peripheral finned-tube evaporators using entropy

generation minimization forms the basis for research in Ref. 16, focusing on reducing irreversibility in heat transfer processes. This leads to improved thermal performance and efficiency and lower energy consumption by the evaporator system. For solar heat exchangers, pseudo-optimization designs utilizing entropy generation maps provide specific improvements in thermal performance and system efficiency.¹⁷ Entropy generation minimization is shown to be an effective method for enhancing thermodynamic processes. This method minimizes irreversibility, increases system coefficients, and improves system performance, offering a framework for evaluating thermodynamic cycles and processes.¹⁸ Finally, the diagnosis of entropy generation in latent heat storage systems offers insights into minimizing global thermal losses and irreversibility, enabling configuration adjustments to improve thermal and overall system efficiency.¹⁹

This study applies entropy generation minimization to optimize the thermodynamic performance of ground heat exchangers with a single U-tube design. The primary goal is to reduce energy losses, particularly due to irreversibility, and maximize heat transfer rates, thereby enhancing efficiency and performance in geothermal applications. 20 The design and efficiency of vertical ground heat exchangers and small-scale geothermal systems require optimization to maximize energy output. This is achieved by fine-tuning heat exchanger parameters and employing effective operational control strategies to improve energy efficacy and system performance.^{21,22} Sustainability assessments of biomass resource utilization, such as a case study on bioethanol production, rely on entropy production metrics. These assessments evaluate environmental and economic impacts while identifying strategies to enhance resource efficiency and minimize entropy generation.²³ A review on entropy generation analysis highlights its utility as a design tool in engineering. By evaluating entropy generation, designers can optimize systems, resulting in improved energy efficiency, reduced waste, and enhanced overall performance across diverse engineering applications.²⁴ The entropy generation minimization analysis of oscillating-flow regenerators examines thermodynamic performance by identifying and reducing irreversibility. This improves energy recovery and efficiency in systems such as heat exchangers and thermal energy storage.²⁵ A study on entropy generation minimization and its integration with multiobjective optimization for air distribution in grate coolers employs genetic algorithms. This approach enhances thermal efficiency and airflow distribution, achieving optimal performance while adhering to sustainable design principles. ^{26,27} In the context of conjugate heat transfer and entropy generation minimization in electroosmotic flows of non-Newtonian fluids, the study focuses on improving thermodynamic performance. It investigates methods to enhance flow dynamics and heat transfer in complex fluid systems, contributing to greater energy efficiency.2

An experimental investigation was conducted on the thermal characteristics of a highly concentrated parabolic trough solar collector using Cu-Therminol nanofluid.²⁹ The importance of entropy generation minimization in thermal optimization is notable, as it reduces irreversibility in thermal processes, thereby improving overall efficiency, enhancing energy savings, and lowering operating expenses across various applications, including power plants, refrigeration systems, and heat exchangers.³⁰ This study also examines the thermodynamic performance and entropy generation of a miniature loop heat pipe utilizing graphene–water nanofluid, combining

theoretical modeling with experimental validation.³¹ The relationship between entropy generation and energy efficiency in natural convection processes within enclosures is explored, with emphasis on practical applications.³² Optimal sizing of renewable energy sources for community microgrids is determined using a Markov model to analyze diverse operational scenarios.³³ Strategies for minimizing entropy generation in the CO₂ hydrogenation process for light olefin production, aiming to enhance overall thermodynamic efficiency, are documented in Ref. 34. Research in Ref. 35 investigates methods to reduce entropy generation in isothermal crystallization processes by applying a generalized mass diffusion law, improving process efficiency. Advances in renewable energy and thermodynamic systems for efficiency improvements through entropy analysis and optimization are discussed in Refs. 36-40. It is predicted in Ref. 41 that non-uniform heat-generating systems can be thermodynamically optimized using entropy minimization and structural design principles. Studies in Refs. 42-45 explore entropy generation minimization and thermodynamic optimization in complex thermal systems, employing nanofluids and innovative design techniques. Entropy generation analysis and thermodynamic efficiency in fluid dynamics and renewable energy systems are highlighted in Refs. 46-48. Integrated energy and exergy analyses for sustainable polygeneration systems, as well as entropy generation minimization in immiscible fluid dynamics, have been extensively researched in Refs. 49 and 50. Studies in Refs. 51 and 52 present entropy-based decision models for sustainable clean energy selection and energy evaluation in pump turbines. Environmental regulations and solar thermal systems are explored through energy and entropy analysis, with a focus on residential buildings and technological progress. 52-54 Research in Refs. 55-57 investigates entropy-driven methods for sustainable energy systems, focusing on decision models, energy assessment, and optimization techniques. The reduction of entropy production in energy systems, including the study of MHD flow dynamics, environmental impacts, and heat and fluid flow mechanisms, is detailed in Refs. 58 and 59. Battery thermal management optimization using phase change materials and finned heat sinks, analyzed through a machine learning approach, is described in Ref. 60. Finally, solar-powered combined energy systems for sustainable electricity and freshwater production have been economically and thermodynamically optimized in Ref. 61.

An integrated analysis of energy efficiency in buildings and heat transfer systems investigates solar radiation, entropy dynamics, and optimization techniques, as described in Refs. 62-64. Understanding efficiency in thermal systems necessitates a comprehension of entropy generation, which is underscored in Ref. 65. The broad scope of entropy studies is highlighted in Ref. 66, focusing on the dual aspects of entropy generation and thermal performance. According to Refs. 67-69, the analysis incorporates diverse approaches, including numerical simulations and heat transfer studies. The study in Ref. 70 emphasizes the use of hybrid nanofluids to enhance thermal properties, specifying the type of fluid analyzed. For effective liquid hydrogen storage systems, Ref. 71 presents a theoretical analysis of entropy generation in variable-density multilayer insulations, aiming to enhance overall system efficiency and minimize energy losses. Studies in Refs. 72-74 advance the design and operation of sustainable renewable energy systems by exploring artificial neural networks to predict entropy generation in hybrid nanofluid microchannel heat sinks, energy dissipation

TABLE I. Future perspectives.

Perspectives	Actions to be taken
Development of an advanced model in entropy generation minimization	Develop increasingly intricate mathematical models that take into account real-world circumstances and intricate thermodynamic cycles Investigate machine learning methods for entropy generation prediction and optimization in diverse renewable systems
2. Including technology for entropy generation minimization	 Examine how EGM principles can be applied to innovative renewable technologies such as smart grids, energy storage systems, and hydrogen production Examine the possibility of EGM in renewable energy hybrid systems that combine several sources (such as solar and wind)
3. Validation of entropy generation minimization techniques through experimentation	Verify theoretical EGM models and optimization techniques in actual renewable energy installations through experimental research Create pilot projects that apply EGM techniques and assess how they affect productivity and performance
4. Economic and policy analysis	Examine cost-benefit analyses and the financial effects of integrating EGM techniques into renewable energy systems Examine the legislative frameworks that support the use of EGM techniques in renewable energy initiatives
5. Evaluation of the entropy generation minimization applications' lifecycle	To assess the environmental effects of EGM strategies in renewable energy systems and conduct thorough lifecycle assessments Determine any possible trade-offs between material/resource consumption and energy efficiency improvements
6. Industrial collaboration	To make it easier to implement EGM in commercial renewable energy projects and cultivate alliances with industry players Provide training courses on EGM techniques and their advantages for engineers and practitioners
7. Education and public awareness	Raise public awareness of EGM's significance in renewable energy through seminars, workshops, and instructional resources Encourage multidisciplinary studies that integrate engineering, environmental science, and thermodynamics

mechanisms in two-stage vertical pumps functioning as turbines, and single-thermodynamic optimization models for central concentrating solar plants. For optimizing energy storage solutions in renewable energy applications, Ref. 75 assesses hydraulic dissipation in a reversible mixed-flow pump for micro-pumped hydro storage. The study employs entropy production theory to evaluate the pump system's performance and efficiency. Entropy analysis of unsteady magnetohydrodynamics (MHD) nanofluid flow over a stretching surface is comprehensively undertaken in Ref. 76. Studies in Refs. 77-79 delve into fossil fuel thermophoretic convective heat transfer, examining its impact on climate change and sustainability. These studies also analyze convective heat transfer and entropy generation in twisted elliptical tubes using the response surface method and conduct comprehensive sustainability assessments. In Ref. 80, researchers investigate the effects of internal heat generation, magnetism, and Joule heating on entropy generation and mixed convective flow in a square domain. This review emphasizes the concept of entropy generation minimization (EGM), highlighting its importance in developing sustainable energy systems. It discusses

EGM's applications in renewable energy technologies, including solar, wind, and biomass systems. Various methodologies for EGM, such as thermodynamic analysis and optimization techniques, are outlined. The potential of EGM to enhance energy efficiency and reduce environmental impacts is explored through recent developments and case studies. Based on the literature review, the future perspectives and gaps identified in this study are summarized Table I.

CONCLUSIONS

The study emphasizes the critical role of Entropy Generation Minimization (EGM) in enhancing the sustainability and efficiency of renewable energy systems. By reviewing various EGM methods and techniques, the literature establishes that EGM is indispensable for optimizing energy systems. Renewable energy technologies can achieve improved performance, reduced energy losses, and minimized environmental impact through entropy reduction. The key takeaways from the literature review are as follows:

- Efficiency Enhancement Through Entropy Reduction:
 The efficiency of renewable energy systems is inherently constrained by entropy production. Reducing entropy is essential for maximizing system performance.
- EGM's Environmental and Energy Benefits: One of EGM's primary advantages is its ability to enable a shift toward significantly higher energy efficiency levels while reducing environmental impact and energy losses.
- Diverse EGM Strategies: The literature highlights various EGM strategies, including advanced system design methodologies, innovative materials, and optimization techniques. These approaches are pivotal in achieving energy system improvements.
- Future Research Directions: Future work should prioritize
 the development of advanced EGM models, the integration of EGM into emerging technologies, and the experimental evaluation of EGM strategies to validate their
 effectiveness.

By addressing these aspects, EGM can play a transformative role in advancing renewable energy systems and achieving long-term sustainability goals.

ACKNOWLEDGMENTS

The authors extend their appreciation to Prince Sattam Bin Abdulaziz University for funding this research work through Project No. 2024/RV/14.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

All authors have equal work. All authors have read and agreed to the published version of the manuscript.

Hossam A. Nabwey: Conceptualization (equal); Investigation (equal); Resources (equal); Writing – original draft (equal); Writing – review & editing (equal). Muhammad Ashraf: Conceptualization (equal); Resources (equal); Writing – original draft (equal); Writing – review & editing (equal). Hajra Nadeem: Formal analysis (equal); Resources (equal); Writing – original draft (equal). A. M. Rashad: Conceptualization (equal); Writing – review & editing (equal). Ali J. Chamkha: Conceptualization (equal); Writing – review & editing (equal).

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

¹A. Bejan, "Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes," J. Appl. Phys. **79**(3), 1191–1218 (1996).

- ²A. Bejan, "Method of entropy generation minimization, or modeling and optimization based on combined heat transfer and thermodynamics," Rev. Gen. Therm. 35(418–419), 637–646 (1996).
- ³ A. Bejan, "The method of entropy generation minimization," in *Energy and the Environment* (Springer, Dordrecht, Netherlands, 1999), pp. 11–22.
- ⁴L. Chen, C. Wu, and F. Sun, "Finite time thermodynamic optimization or entropy generation minimization of energy systems," J. Non-Equilib. Thermodyn. **24**, 327 (1999).
- ⁵A. Bejan, "Entropy generation minimization: The method and its applications," in *Thermal Sciences 2000. Proceedings of the International Thermal Science Seminar* (Begell House, Inc., 2000), Vol. 1.
- ⁶J. C. Ordóñez and A. Bejan, "Entropy generation minimization in parallel-plates counterflow heat exchangers," Int. J. Energy Res. **24**(10), 843–864 (2000).
- ⁷J. R. Culham and Y. S. Muzychka, "Optimization of plate fin heat sinks using entropy generation minimization," IEEE Trans. Compon., Packag. Technol. **24**(2), 159–165 (2001).
- ⁸A. Bejan, "Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture," Int. J. Energy Res. **26**(7), 0–43 (2002).
- ⁹E. B. Ratts and A. G. Raut, "Entropy generation minimization of fully developed internal flow with constant heat flux," J. Heat Transfer **126**(4), 656–659 (2004).
- ¹⁰ P. P. P. M. Lerou, T. T. Veenstra, J. F. Burger, H. J. ter Brake, and H. Rogalla, "Optimization of counterflow heat exchanger geometry through minimization of entropy generation," Cryogenics 45(10–11), 659–669 (2005).
- ¹¹M. A. Rosen, I. Dincer, and M. Kanoglu, "Role of exergy in increasing efficiency and sustainability and reducing environmental impact," Energy Policy **36**(1), 128–137 (2008).
- ¹²J. Guo, L. Cheng, and M. Xu, "Optimization design of shell-and-tube heat exchanger by entropy generation minimization and genetic algorithm," Appl. Therm. Eng. 29(14–15), 2954–2960 (2009).
- ¹³ J. Guo, L. Cheng, and M. Xu, "Multi-objective optimization of heat exchanger design by entropy generation minimization," J. Heat Transfer 132, 081801 (2010).
 ¹⁴ A. Myat, K. Thu, Y. D. Kim, A. Chakraborty, W. G. Chun, and K. C. Ng, "A second law analysis and entropy generation minimization of an absorption chiller," Appl. Therm. Eng. 31(14–15), 2405–2413 (2011).
- ¹⁵F. Gutiérrez and F. Méndez, "Entropy generation minimization for the thermal decomposition of methane gas in hydrogen using genetic algorithms," Energy Convers. Manage. 55, 1–13 (2012).
- ¹⁶B. F. Pussoli, J. R. Barbosa, Jr., L. W. da Silva, and M. Kaviany, "Optimization of peripheral finned-tube evaporators using entropy generation minimization," Int. J. Heat Mass Transfer 55(25–26), 7838–7846 (2012).
- ¹⁷G. Giangaspero and E. Sciubba, "Application of the entropy generation minimization method to a solar heat exchanger: A pseudo-optimization design process based on the analysis of the local entropy generation maps," Energy **58**, 52–65 (2013).
- ¹⁸X. Cheng and X. Liang, "Discussion on the applicability of entropy generation minimization to the analyses and optimizations of thermodynamic processes," Energy Convers. Manage. 73, 121–127 (2013).
- 19 E. Guelpa, A. Sciacovelli, and V. Verda, "Entropy generation analysis for the design improvement of a latent heat storage system," Energy 53, 128–138 (2013).
 20 M. Li and A. C. Lai, "Thermodynamic optimization of ground heat exchangers with single U-tube by entropy generation minimization method," Energy Convers. Manage. 65, 133–139 (2013).
- ²¹S. Huang, Z. Ma, and P. Cooper, "Optimal design of vertical ground heat exchangers by using entropy generation minimization method and genetic algorithms," Energy Convers. Manage. 87, 128–137 (2014).
- ²²S. Cosentino, A. Sciacovelli, and V. Verda, "Optimal operation of small geothermal systems through entropy generation analysis," in *Engineering Systems Design and Analysis* (American Society of Mechanical Engineers, 2014), Vol. 45844, p. V002T09A018.
- ²³ K. Samiei and M. Fröling, "Sustainability assessment of biomass resource utilization based on production of entropy Case study of a bioethanol concept," Ecol. Indic. 45, 590–597 (2014).
- ²⁴ A. Sciacovelli, V. Verda, and E. Sciubba, "Entropy generation analysis as a design tool—A review," Renewable Sustainable Energy Rev. 43, 1167–1181 (2015).

- ²⁵P. V. Trevizoli and J. R. Barbosa, Jr., "Entropy generation minimization analysis of oscillating-flow regenerators," Int. J. Heat Mass Transfer **87**, 347–358 (2015).
- ²⁶ A. Bejan, "Exergy analysis, entropy generation minimization, and the constructal law," in *Mechanical Engineers' Handbook, Energy and Power Vol. 4* (Wiley, 2015), p. 157.
- ²⁷W. Shao, Z. Cui, and L. Cheng, "Multi-objective optimization design of air distribution of grate cooler by entropy generation minimization and genetic algorithm," Appl. Therm. Eng. **108**, 76–83 (2016).
- ²⁸P. Goswami, P. K. Mondal, A. Datta, and S. Chakraborty, "Entropy generation minimization in an electroosmotic flow of non-Newtonian fluid: Effect of conjugate heat transfer," J. Heat Transfer **138**(5), 051704 (2016).
- A. Mwesigye, Z. Huan, and J. P. Meyer, "Thermal performance and entropy generation analysis of a high concentration ratio parabolic trough solar collector with Cu-Therminol®VP-1 nanofluid," Energy Convers. Manage. 120, 449–465 (2016).
 X. T. Cheng and X. G. Liang, "Role of entropy generation minimization in thermal optimization," Chin. Phys. B 26(12), 120505 (2017).
- ³¹T. Tharayil, L. G. Asirvatham, M. J. Dau, and S. Wongwises, "Entropy generation analysis of a miniature loop heat pipe with graphene–water nanofluid: Thermodynamics model and experimental study," Int. J. Heat Mass Transfer 106, 407–421 (2017).
- ³²P. Biswal and T. Basak, "Entropy generation vs energy efficiency for natural convection based energy flow in enclosures and various applications: A review," Renewable Sustainable Energy Rev. **80**, 1412–1457 (2017).
- ³³Y. Y. Hong, W. C. Chang, Y. R. Chang, Y. D. Lee, and D. C. Ouyang, "Optimal sizing of renewable energy generations in a community microgrid using Markov model," Energy 135, 68–74 (2017).
- ³⁴L. Chen, L. Zhang, S. Xia, and F. Sun, "Entropy generation minimization for CO₂ hydrogenation to light olefins," Energy **147**, 187–196 (2018).
- ³⁵L. Chen, S. Xia, and F. Sun, "Entropy generation minimization for isothermal crystallization processes with a generalized mass diffusion law," Int. J. Heat Mass Transfer 116, 1–8 (2018).
- ³⁶J. J. Ramírez-Minguela, J. A. Alfaro-Ayala, V. H. Rangel-Hernández, A. R. Uribe-Ramírez, J. M. Mendoza-Miranda, V. Pérez-García, and J. M. Belman-Flores, "Comparison of the thermo-hydraulic performance and the entropy generation rate for two types of low temperature solar collectors using CFD," Sol. Energy 166, 123–137 (2018).
- ³⁷Y. Cai, W. W. Wang, W. T. Ding, G. B. Yang, D. Liu, and F. Y. Zhao, "Entropy generation minimization of thermoelectric systems applied for electronic cooling: Parametric investigations and operation optimization," Energy Convers. Manage. 186, 401–414 (2019).
- ³⁸M. Ceci, R. Corizzo, D. Malerba, and A. Rashkovska, "Spatial autocorrelation and entropy for renewable energy forecasting," Data Min. Knowl. Discov. **33**(3), 698–729 (2019).
- ³⁹Q. Niu, M. You, and Z. Sun, "A self-adaptive multi-objective cross-entropy method for hybrid renewable energy systems," in *Proceedings of the 2019 8th International Conference on Computing and Pattern Recognition* (ICCPR '19, 2019), pp. 494–500.
- ⁴⁰G. Streckienė, V. Martinaitis, and J. Bielskus, "From entropy generation to exergy efficiency at varying reference environment temperature: Case study of an air handling unit," Entropy 21(4), 361 (2019).
- ⁴¹ H. Feng, J. You, L. Chen, Y. Ge, and S. Xia, "Constructal design of a non-uniform heat generating disc based on entropy generation minimization," Eur. Phys. J. Plus **135**(2), 257 (2020).
- ⁴²W. W. Wang, Y. Cai, L. Wang, C. W. Liu, F. Y. Zhao, M. A. Sheremet, and D. Liu, "A two-phase closed thermosyphon operated with nanofluids for solar energy collectors: Thermodynamic modeling and entropy generation analysis," Sol. Energy 211, 192–209 (2020).
- ⁴³P. Li, L. Chen, S. Xia, L. Zhang, R. Kong, Y. Ge, and H. Feng, "Entropy generation rate minimization for steam methane reforming reactor heated by molten salt," Energy Rep. 6, 685–697 (2020).
- ⁴⁴E. C. Okonkwo, H. Adun, A. A. Babatunde, M. Abid, and T. A. Ratlamwala, "Entropy generation minimization in a parabolic trough collector operating with SiO₂-water nanofluids using the genetic algorithm and artificial neural network," J. Therm. Sci. Eng. Appl. **12**(3), 031007 (2020).

- ⁴⁵L. Kalapala and J. K. Devanuri, "Optimization of fin parameters to reduce entropy generation and melting time of a latent heat storage unit," J. Sol. Energy Eng. 142(6), 061005 (2020).
- ⁴⁶M. R. Saffarian, F. Jamaati, A. Mohammadi, F. Gholami Malekabad, and K. Ayoubi Ayoubloo, "Investigating the entropy generation around an airfoil in turbulent flow," Aircr. Eng. Aerosp. Technol. **92**(7), 1001–1017 (2020).
- ⁴⁷M. M. Ghorani, M. H. Sotoude Haghighi, A. Maleki, and A. Riasi, "A numerical study on mechanisms of energy dissipation in a pump as turbine (PAT) using entropy generation theory," Renewable Energy **162**, 1036–1053 (2020).
- ⁴⁸M. H. Khoshgoftar Manesh and V. C. Onishi, "Energy, exergy, and thermoeconomic analysis of renewable energy-driven polygeneration systems for sustainable desalination," Processes 9(2), 210 (2021).
- ⁴⁹H. A. Nabwey, W. A. Khan, A. M. Rashad, H. Elmeky, S. Abdelnaem, and M. A. Hawsah, "Solar energy improvement in solar HVAC using Sutterby magnetoternary hybrid nanofluid flow with Smoluchowski temperature conditions: A solar thermal application," J. Appl. Math. Mech. 103(2), e202300063 (2023).
- ⁵⁰ X. Chen and Y. Jian, "Entropy generation minimization analysis of two immiscible fluids," Int. J. Therm. Sci. 171, 107210 (2022).
- ⁵¹ A. Yu, L. Li, J. Ji, and Q. Tang, "Numerical study on the energy evaluation characteristics in a pump turbine based on the thermodynamic entropy theory," Renewable Energy **195**, 766–779 (2022).
- ⁵² A. Rico, V. J. Ovejas, and A. Cuadras, "Analysis of energy and entropy balance in a residential building," J. Clean. Prod. **333**, 130145 (2022).
- ⁵³J. Cao, S. H. Law, D. Wu, X. Tang, Y. Fan, and X. Yang, "Does environmental regulation promote the volatility of technological progress? —Analysis based on the law of entropy generation," Front. Environ. Sci. 10, 876707 (2022).
- ⁵⁴R. Goyal and K. S. Reddy, "Numerical investigation of entropy generation in a solar parabolic trough collector using supercritical carbon dioxide as heat transfer fluid," Appl. Therm. Eng. 208, 118246 (2022).
- ⁵⁵H. A. Nabwey, "Feasibility of Rough Sets Theory in Predicting Heat Transfer Performance in Thermally Developed Flow of Third Grade Nanofluid with Gyrotactic Microorganisms," J. Nanofluids 9(1), 66–74 (2020).
- ⁵⁶H. A. Nabwey, W. A. Khan, Z. M. Abdelrahman, A. M. Rashad, and M. A. Hawsah, "Non-darcy bioconvective flow of the ree-eyring ternary-hybrid nanofluid over a stretching sheet with velocity and thermal slips: Entropy analysis," J. Porous Media 28(3), 13–45 (2025).
- ⁵⁷Y. Fu, Y. Zhao, M. Liu, J. Wang, and J. Yan, "Optimization of cold-end system of thermal power plants based on entropy generation minimization," Front. Energy 16, 956–972 (2022).
- ⁵⁸J. C. Ordonez, E. J. Cavalcanti, and M. Carvalho, "Energy, exergy, entropy generation minimization, and exergoenvironmental analyses of energy systems-a mini-review," Front. Sustainability 3, 902071 (2022).
- ⁵⁹R. Agrawal and P. Kaswan, "Minimization of the entropy generation in MHD flow and heat transfer of nanofluid over a vertical cylinder under the influence of thermal radiation and slip condition," Heat Transf. 51(2), 1790–1808 (2022).
- ⁶⁰ A. Shahsavar, A. Goodarzi, I. Baniasad Askari, M. Jamei, M. Karbasi, and M. Afrand, "The entropy generation analysis of the influence of using fins with tip clearance on the thermal management of the batteries with phase change material: Application a new gradient-based ensemble machine learning approach," Eng. Anal. Bound. Elem. 140, 432–446 (2022).
- ⁶¹E. Assareh, M. Delpisheh, S. M. Alirahmi, S. Tafi, and M. Carvalho, "Thermodynamic-economic optimization of a solar-powered combined energy system with desalination for electricity and freshwater production," Smart Energy 5, 100062 (2022).
- ⁶² A. Abbas, A. Noreen, M. Ashraf Ali, M. Ashraf, E. Alzahrani, R. Marzouki, and M. Goodarzi, "Solar radiation over a roof in the presence of temperature-dependent thermal conductivity of a Casson flow for energy saving in buildings," Sustain. Energy Technol. Assess. 53, 102606 (2022).
- ⁶³ H. A. Nabwey, U. Sultana, M. Mushtaq, M. Ashraf, A. M. Rashad, S. I. Alshber, and M. Abu Hawsah, "Entropy analysis of magnetized carbon nanofluid over axially rotating stretching disk," Materials 15(23), 8550 (2022).
- ⁶⁴Z. Wang, M. Li, F. Ren, B. Ma, H. Yang, and Y. Zhu, "Sobol sensitivity analysis and multi-objective optimization of manifold microchannel heat sink considering entropy generation minimization," Int. J. Heat Mass Transfer 208, 124046 (2023).

- ⁶⁵H. Chen, P. He, M. Shen, and Y. Ma, "Thermal analysis and entropy generation of Darcy-Forchheimer ternary nanofluid flow: A comparative study," Case Stud. Therm. Eng. 43, 102795 (2023).
- ⁶⁶R. Ekiciler, K. Arslan, and O. Turgut, "Application of nanofluid flow in entropy generation and thermal performance analysis of parabolic trough solar collector: Experimental and numerical study," J. Therm. Anal. Calorim. **148**(14), 7299–7318 (2023).
- ⁶⁷A. Tavakoli, M. Farzaneh-Gord, and A. Ebrahimi-Moghadam, "Using internal sinusoidal fins and phase change material for performance enhancement of thermal energy storage systems: Heat transfer and entropy generation analyses," Renewable Energy 205, 222–237 (2023).
- ⁶⁸T. P. Chen, X. Z. Wei, R. S. Bie, Y. Li, T. Zhang, and Y. X. Liu, "A numerical study on the energy dissipation mechanisms of a two-stage vertical pump as turbine using entropy generation theory," J. Appl. Fluid Mech. **17**(1), 159–175 (2023)
- ⁶⁹ A. Kaood, A. Aboulmagd, and A. ElDegwy, "Entropy generation analysis of turbulent flow in conical tubes with dimples: A numerical study," J. Therm. Anal. Calorim. **148**(12), 5667–5685 (2023).
- ⁷⁰ N. K. Manna, N. Biswas, D. K. Mandal, U. K. Sarkar, H. F. Öztop, and N. Abu-Hamdeh, "Impacts of heater-cooler position and Lorentz force on heat transfer and entropy generation of hybrid nanofluid convection in quarter-circular cavity," Int. J. Numer. Methods Heat Fluid Flow 33(3), 1249–1286 (2023).
- ⁷¹ B. Wang, H. Wang, Y. Gao, J. Yu, Y. He, Z. Xiong, H. Lu *et al.*, "Theoretical analysis of entropy generation in multilayer insulations: A case study of performance optimization of variable density multilayer insulations for liquid hydrogen storage systems," Int. J. Hydrogen Energy 85, 175–190 (2024).
- ⁷²R. Khosravi, M. Zamaemifard, S. Safarzadeh, M. Passandideh-Fard, A. R. Teymourtash, and A. Shahsavar, "Predicting entropy generation of a hybrid nanofluid

- in microchannel heat sink with porous fins integrated with high concentration photovoltaic module using artificial neural networks," Eng. Anal. Bound. Elem. **150**, 259–271 (2023).
- ⁷³ A. Mahdy, A. J. Chamkha, H. A. Nabwey, "Entropy analysis and unsteady MHD mixed convection stagnation-point flow of Casson nanofluid around a rotating sphere," Alexandria Eng. J. 59(3), 1693–1703 (2020).
- ⁷⁴S. Levario-Medina and G. Valencia-Ortega, "Current trends in single-thermodynamic optimization models towards sustainable designs of central concentrating solar plants," Sol. Energy 279, 112760 (2024).
- ⁷⁵J. Pei, J. Shen, W. Wang, S. Yuan, and J. Zhao, "Evaluating hydraulic dissipation in a reversible mixed-flow pump for micro-pumped hydro storage based on entropy production theory," Renewable Energy 225, 120271 (2024).
- ⁷⁶T. A. Yusuf, "Entropy analysis of unsteady MHD nanofluid flow over a stretching surface with effects of variable viscosity and nonuniform heat generation," Numer. Heat Transfer, Part A 85(16), 2754–2771 (2024).
- ⁷⁷H. Nadeem, M. Ashraf, G. Rasool, and S. Tao, "Impacts of fossil fuel thermophoretic convective heat transfer on climate change with variable viscosity and thermal conductivity," Phys. Fluids 36(9), 093125 (2024).
- ⁷⁸X. Li, J. Feng, Y. Tan, Z. Wang, G. Tian, and L. Wang, "Examination of convective heat transfer and entropy generation performance in twisted elliptical tubes using response surface method," Appl. Therm. Eng. 248, 123164 (2024).
- ⁷⁹ L. Liu, R. Zhai, Y. Xu, Y. Hu, S. Liu, and L. Yang, "Comprehensive sustainability assessment and multi-objective optimization of a novel renewable energy driven multi-energy supply system," Appl. Therm. Eng. 236, 121461 (2024).
- ⁸⁰N. Deb and S. Saha, "Role of internal heat generation, magnetism and Joule heating on entropy generation and mixed convective flow in a square domain," Ann. Nucl. Energy 198, 110324 (2024).