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This research investigates the recent advancements in heat transfer through nanofluids in porous media.
We seek to conduct a comprehensive review of the most influential papers published since 2020, aiming to
contribute significantly to this field. Initially, key parameters affecting heat transfer in porous media, such as
porosity, permeability, pore shape and size, and other factors are introduced. Subsequently, the primary heat
transfer mechanisms, the impact of flow velocity and patterns, heat transfer rates, thermal equilibrium and
nonequilibrium conditions, and techniques to enhance heat transfer, including nanomaterials and phase change
materials, are explored. Following an introduction to nanomaterials and their various types, this study delves
into the methodologies for their synthesis and thermal conductivity models. Additionally, phase change materials
are categorized as another effective approach to enhance heat transfer, and methods for improving their thermal
conductivity are explored. A comprehensive review of recent studies, presented in tabular form, reveals that the
highest heat transfer coefficient and Nusselt number for nanofluids were attained at a 30° angle and with a square
porosity. In forced and mixed convection scenarios, increasing porosity and the length of the heat source led
to a higher Nusselt number, whereas increasing the Hartmann number resulted in a decrease. Furthermore, a
comprehensive statistical analysis of heat transfer in porous media using nanofluids demonstrated that Al,Os—
water nanofluids with a 28.33% concentration, cylindrical geometry with 27.78%, and the Darcy—Brinkman
model with 33% exhibited the most significant contributions.
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NOMENCLATURE
k, Boltzmann constant Abbreviations
o conduction factor for base CGM common grid model

fluid CVFEM  control volume finite element
kp conduction factor for method

nanoparticles FDM fused deposition modeling
DA Darcy number FEM finite element method
v Darcy velocity FVM finite volume method
dp diameter of the phase GFEM generalized finite element
K, effective viscosity method
i fluid’s viscosity GDQLIM generalized differential
f frag function quadrature element method
Gr Grashof number HNF holistic niche formation
Ha Hartmann number KBM Krylov—Bogoliubov—
C, mass quotient of each Mitropolsky

phase MWCNT  multi-walled carbon nanotubes
Nu Nusselt number RSM response surface methodology
Pr Prandtl number SIMPLE  semi-implicit method for
Ra Rayleigh number pressure linked equations
Re Reynolds number MHD magnetohydrodynamics

1. INTRODUCTION

Heat transfer in porous media enhanced by nanoparticles is a cutting-edge and challenging research topic in engi-
neering. Given its wide-ranging applications and significant importance across various industries, it has attracted
substantial attention. In recent years, nanoparticles have emerged as promising additives to augment the thermal
performance of heat transfer fluids. Owing to their exceptionally high specific surface area and superior thermal prop-
erties, nanoparticles can dramatically enhance the thermal conductivity and heat transfer capabilities of base fluids.
The incorporation of nanoparticles into base fluids results in the creation of nanofluids, which exhibit significantly
improved heat transfer characteristics and demonstrate superior performance within porous media.

2. POROUS MATERIAL

A porous material is defined as a solid matrix containing interconnected voids. Depending on whether the porous me-
dium can allow the passage of substances under external forces, it is classified as permeable or impermeable. Porous
media can be either dispersed or continuous, homogeneous or heterogeneous, composite, or a combination of different
structures.

Porous materials are also known as cellular solids. The word “cell” is derived from the Latin word cella, which
means a chamber or a closed compartment. Therefore, cellular solids are assemblies of cells that are aggregated by
solid edges or faces. If the solid material is enclosed only by the edges of the cell so that the cells are connected
through open faces, the material is called open-celled. If the faces are solid, each cell is separate from its neighboring
cells; in this case, the material is called closed-celled (Flickinger, 2013).

Porous media properties are defined by several parameters, including the following:

*  Porosity: the ratio of the volume of voids to the total volume of the porous material.

»  Pore type: open, closed, or partially open.
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*  Permeability: the fraction of the cross-sectional area occupied by pores.

»  Tortuosity: the ratio of the average pore length to the thickness of the porous medium.
e Specific surface area and pore shape.

*  Viscosity and inertia coefficients of the porous medium.

*  Physical and mechanical properties of the porous medium.

The permeability of a medium is generally a function of the shape and orientation of its fibers, their arrangement
relative to the flow, and their distribution in different directions (Kaviany, 2012).

2.1 Permeability

Permeability is a fundamental and intrinsic property of porous media. Unlike porosity, it cannot be defined solely in
terms of fluid flow but is rather a characteristic of the porous medium itself. Permeability is commonly used to esti-
mate the rate of fluid injection or flow into a porous medium. It is defined as a proportionality constant relating the vol-
umetric flow rate of a fluid through a porous medium to the applied pressure (potential gradient) (Nazari et al., 2013).
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Initial studies in this field can be traced back to Darcy’s experiments. Darcy reported a linear relationship be-
tween the pressure drop across a unit length of a porous medium and the average superficial velocity. The equation
k =pU,/Vp represents Darcy’s law for one-dimensional, single-phase flow and defines permeability. The coefficient
k in Darcy’s model represents the permeability of the porous medium in terms of square meters. In this equation, p is
the fluid viscosity, U, is the average superficial velocity, and Vp is the pressure drop per unit length. This relationship,
frequently cited in the literature, is suitable for creeping flows (Kaviany, 2012). Darcy’s law is often used to find the
pressure drop, especially where the flow regime is creeping [Reynolds number (Re) < 1]. The Brinkman—Forchheimer
model is essentially an extension of Darcy’s model and is used when the flow regime is not creeping. In such cases,
inertial effects in the porous medium must be considered.

2.2 Porosity

Porosity (€) in porous media is defined as the fraction of the total volume occupied by pores. Consequently, 1 — € rep-
resents the fraction occupied by the solid matrix. For homogeneous media, the surface porosity is equal to €, meaning
that a fraction of the total surface area is occupied by pores. This definition assumes that all pore spaces are intercon-
nected. However, if this assumption does not hold, and the pores are isolated, effective porosity is defined as the ratio
of the interconnected void volume to the total volume.

3. HEAT TRANSFER IN POROUS MEDIA: CONCEPTS AND TYPES OF CONVECTION

In general, the local temperature of the fluid and solid phases within a porous medium is not identical, a condition
termed “local thermal nonequilibrium.” Under such circumstances, energy equations are formulated independently
for both the fluid and solid phases. This assumption is particularly relevant in scenarios involving high fluid veloci-
ties or in the presence of internal heat generation within the porous medium. Conversely, under the assumption
of local thermal equilibrium, the average temperature of both phases is considered equal, and a single effective
energy equation is employed. By systematically investigating the influence of various parameters such as Grashof
(Gr), Darcy Da, and Reynolds numbers on velocity and temperature profiles, as well as exploring different bound-
ary conditions, and porous media orientations, and comparing the heat transfer behavior under both local thermal
equilibrium and nonequilibrium conditions in diverse geometries, it can be concluded that porous media enhance
heat transfer.
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Having established the concepts of thermal equilibrium and nonequilibrium in porous media, we can now delve
into the various modes of heat transfer, including free convection, forced convection, and mixed convection.

3.1 Forced and Free Convection

Convection is a significant mode of heat transfer in nature, which occurs due to the movement of a fluid relative to a
solid surface. When a fluid flows over a solid, heat transfer takes place between the fluid and the solid surface if there
is a temperature difference. This heat transfer is facilitated by the fluid’s motion relative to the solid.

Forced convection occurs when a fluid is forced to flow over a solid surface due to an external force, such as a
pump or fan. The applied force induces fluid motion, resulting in heat transfer between the fluid and the solid surface.

Free convection occurs when temperature differences within a fluid body create density variations, leading to
buoyancy forces. The buoyancy force, which is directly proportional to the density difference, drives the fluid motion.
In free convection, the Gr is a crucial parameter that quantifies the relative magnitude of buoyancy forces (Holman,
1997).

In free convection systems, the Gr can be physically interpreted as a dimensionless group representing the ratio
of buoyancy forces to viscous forces. This interpretation is analogous to the Re in forced convection systems and
serves as the primary criterion for the transition from laminar to turbulent boundary layer flow. Mathematically, the
Gr is defined as

3
<h;=§%§9!, @)

where g is the gravitational acceleration, 7,, — T, is the temperature difference, x is the characteristic length, v is the
kinematic viscosity of the fluid, and B is the volumetric thermal expansion coefficient (Holman, 1997).

In free convection systems, the Rayleigh number (Ra) is a dimensionless parameter that quantifies the relative
significance of buoyancy forces compared to viscous forces. It is defined as the product of the Gr and the Prandtl
number (Pr):

gBATLp
po

Ra=GrxPr= 3)

where p is the dynamic viscosity of the fluid, a is the thermal diffusivity of the fluid, and Pr is the ratio of momentum
diffusivity to thermal diffusivity.

Furthermore, k represents the thermal conductivity coefficient, and Cp denotes the specific heat coefficient at con-
stant pressure. The dimensionless Nusselt number (Nu) is employed to quantify the heat transfer from a heated surface
to the adjacent fluid. This number is defined as follows:

Nu=—, “)

where 4 is the heat transfer coefficient, L is the characteristic length, and & is the thermal conductivity coefficient of
the fluid.

Generally, the combined effects of forced and free convection exist when Gry/Rel* =1. If Gr,/Rel* > 1, free
convection is neglected, and conversely, when Gr,/Rel? < 1, the effects of forced convection are negligible (Holman,
1997).
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3.2 Mixed Convection

Mixed convection occurs when both forced and free convection mechanisms contribute to heat transfer. This typically
happens in situations where a fluid flows at a low velocity over a heated surface. The buoyancy forces arising from the
temperature-induced density differences augment the forced flow, leading to a complex interaction between the two
convection modes. Mixed convection is characterized by the interaction of free and forced convection mechanisms,
influencing both heat transfer and flow patterns. Buoyancy forces, arising from temperature-induced density differ-
ences, drive free convection. Conversely, forced convection is driven by externally applied forces. The Ra and Re are
key parameters in the analysis of mixed convection phenomena. The Ra quantifies the significance of free convection,
whereas the Re characterizes forced convection. The relative contributions of these two mechanisms to heat transfer
and flow patterns can be assessed by comparing their respective values. Dominance of forced convection occurs when
the Re substantially exceeds the Ra. Conversely, free convection prevails when the Ra significantly surpasses the Re.
In cases where these numbers are of a similar order of magnitude, both mechanisms interact to influence the flow and
heat transfer (Holman, 1997).

A multitude of techniques have been developed to enhance heat transfer in fluids. As depicted in Fig. 1, these
methods can be broadly classified as active or passive. Passive methods encompass extended surfaces and additive
fluids. Nanotechnology represents a significant advancement within the realm of additive fluids.

4. NANOTECHNOLOGY

The term “nanofluid” was coined by Choi and Eastman (1995) to describe a novel type of fluid consisting of a base
fluid with a small amount of suspended metallic or nonmetallic nanoparticles. These nanoparticles are dispersed
homogeneously and stably within the continuous phase. Early research and development in nanofluid technology
demonstrated the significant potential of nanofluids for heat transfer applications.

Nanoparticles are particles with dimensions typically ranging from 1 to 100 nm. They can be composed of metals,
insulators, semiconductors, or composite materials such as core-shell structures. Common shapes include nanospheres
and nanorods. Smaller nanoparticles are categorized as nanoclusters. Nanocrystals and semiconductor quantum dots
are also considered types of nanoparticles.

Enhancement of
Heat Transfer
Methods

Passive Active
Methods Methods

Extended Additive
Surfaces Fluids

Nanotechnology

FIG. 1: Enhancement of heat transfer methods
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Nanoparticles can be categorized into four primary types: elemental nanoparticles, ceramic oxide nanoparticles,
carbon nanotubes, and mineral nanomaterials. Figure 2 provides a comprehensive visualization of this classification
scheme.

There are numerous techniques available for the production of nanoparticles. These techniques can be classified
into three primary categories. A schematic representation of these methods is provided in Fig. 3.

4.1 Heat Transfer Models in Nanofluids

The outstanding properties of nanofluids, such as enhanced thermal conductivity compared with traditional fluids,
their relatively simple preparation, and acceptable viscosity, make them prime candidates for coolant applications.
Conventional fluids exhibit significantly lower thermal conductivity compared with solids. Figure 4 illustrates the
thermal conductivity of various common fluids and solids (metals and nonmetals). Clearly, solids possess higher ther-
mal conductivity than conventional fluids.

5. PHASE CHANGE MATERIALS

Another effective method to enhance heat transfer is the use of phase change materials (PCMs). PCMs possess the
ability to store thermal energy in two forms: sensible and latent heat. Sensible heat is stored as the temperature of a
solid or liquid increases. The quantity of sensible heat stored within a substance is a function of its temperature, spe-
cific heat capacity, and mass. Latent heat storage occurs during phase transitions, such as solid-to-liquid, liquid-to-gas,

* Nanoclay

© Talc Nanoparticles (Nano Talc) Mineral

® Mica Nanoparticles (Nano Mica) Nanomaterials
* Bentonite

/Ceramic Oxide
Nanoparticles

o Silver Nanoparticles (NanoAg) ¢ Iron Nanoparticles (NanoFe) //
® Gold Nanoparticles (NanoAu) © Nickel Nanoparticles (NanoNi) Elemental
* Boron Nanoparticles (NanoB) o Silicon Nanoparticles (NanoSi) ‘ |
e Cobalt Nanoparticles (NanoCo) o Titanium Nanoparticles (NanoTi) NamPa'ﬂdes |
e Chromium Nanoparticles (NanoCr) ¢ Tungsten Nanoparticles (NanoW) 4
e Copper Nanoparticles (NanoCu) e Zinc Nanoparticles (NanoZn) /

FIG. 2: Nanoparticle varieties
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FIG. 4: Thermal conductivity coefficient of various substances
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or solid-to-solid. PCMs primarily store energy in the form of latent heat of fusion (Mehling and Cabeza, 2008). Heat
storage through phase change in various states is as follows:

Solid-solid phase transformations are not considered suitable due to the exceedingly slow rate and minimal quan-
tity of heat transfer involved in such processes. Liquid—gas phase transformations are not feasible owing to the el-
evated thermal energy requirements and the concomitant generation of high-pressure gaseous phases. Solid-liquid
phase transformations are more advantageous because phase change materials undergo a phase transition from a
solid to a liquid state at a constant temperature upon absorbing latent heat, subsequently releasing this energy at ap-
proximately the same temperature. PCMs are in a solid state at ambient conditions. PCMs can be categorized into
two primary divisions: organic and inorganic materials. A schematic representation of this classification is illustrated
in Fig. 5.

5.1 Thermal Conduction Enhancement of PCMs

Despite their high density, the low melting and freezing rates of phase change materials can reduce the potential of
energy storage systems in specific applications. This is because almost all conventional phase change materials have
low thermal conductivity. In general, the thermal conductivity of phase change materials can be increased by using
materials with a high conductivity coefficient. This increase in thermal conductivity can be achieved through various
methods:

*  Saturation of porous materials with high thermal conductivity in PCMs

»  Dispersion of high-thermal-conductivity particles in PCMs

*  Embedding of metallic compounds and structures in PCMs

*  Use of materials with high thermal conductivity and low density

Although the incorporation of graphite composites into PCMs can enhance system efficiency, it is limited by the
time-consuming and costly production process. The addition of micro- and nano-sized high-thermal-conductivity

particles to PCMs improves their thermodynamic properties and results in increased system performance (Jegad-
heeswaran and Pohekar, 2009).

Phase Change
Materials

Inorganic Organic
Materials Materials

Metals Salt Hydrates Paraffins Sugar Alcohols
Fatty Acids

FIG. 5: Classification of phase change materials
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6. RESULTS AND DISCUSSION

Numerous studies have been conducted on heat transfer in porous media using nanofluids. Among these, compre-
hensive reviews play a pivotal role in advancing the scientific and practical goals of this field. Nabwey et al. (2023)
provided a comprehensive review of nanofluid heat transfer in porous media, meticulously evaluating all published
research up to 2020. Their novel analytical approach introduced a new parameter (Azizimehr et al., 2024) that strongly
correlates with heat transfer processes and enhances the performance of existing systems (Moltames et al., 2019).
Building on Nabwey et al.’s (2023) work, this section aims to conduct a more comprehensive and in-depth review of
research published since 2020 on nanofluid heat transfer in porous media. This review focuses on the advancements
in PCM technology and the combination of nanoparticles with PCMs (NPCMs).

6.1 Integrated Free Convectional Heat Transfer

Hussain et al. (2022) investigated free convection heat transfer in a corrugated enclosure filled with a non-New-
tonian hybrid nanofluid. Their numerical results indicated that the highest heat transfer rate was achieved for a
pseudoplastic hybrid nanofluid with a high Ra and low thermal conductivity ratio and Hartmann number (Ha). In
another study, Armaghani et al. (2024) examined free convection heat transfer in a tilted porous corrugated hybrid
enclosure filled with a nanofluid under the influence of a magnetic field. Their findings revealed that increasing the
nanofluid’s volumetric friction resulted in a higher average Nu and heat generation rate. Nazarahari et al. (2024)
experimentally investigated free convection heat transfer of nanofluids in porous media with various pore shapes.
Their results showed that the highest heat transfer coefficient and Nu were achieved for nanofluids at a 30° angle
with a square porosity, whereas the lowest values were recorded at 0°. Hashemi et al. (2024) numerically studied
three-dimensional unsteady free convection of Al,O,~water nanofluids using a vibrating plate with the two-way
fluid-structure interaction technique. Their results indicated that a vibrating plate closer to the right side of the
cavity increased the heat transfer coefficient. Additionally, increasing the width of the vibrating plate also had a
positive impact on the heat transfer coefficient. Table 1 presents a comparison of recent studies (2020—present) on
the free convection of nanofluids in porous media, considering parameters such as methodology, nanofluid type,
geometry, and decision variables.

6.2 Forced Convectional Heat Transfer

Ghasemiasl et al. (2023) conducted a comprehensive review of the forced convection of nanofluids in channels and
tubes. They initially introduced the types of flow and the governing equations and then performed a comprehensive
comparison in terms of methodology, type, and size of nanoparticles, nanoparticle volume fraction, and flow condi-
tions. Soleymani et al. (2022) numerically investigated turbulent flow, heat transfer, and entropy generation of a water-
based magnetic nanofluid in a tube with a porous hemisphere under a uniform magnetic field. They demonstrated that
the Nu decreased to a minimum value as porosity reached 0.8. The increase in heat transfer was more effective with
increasing the Ha compared with adding nanoparticles. A higher Ha and larger volume fraction of nanoparticles re-
sulted in broader performance evaluation criteria. Table 2 presents a comparison of recent studies (2020—present) for
forced convection of nanofluids in porous media, considering the aforementioned parameters.

6.3 Mixed Convectional Heat Transfer

Rashad et al. (2021) investigated magnetohydrodynamic (MHD) mixed convection in a hybrid Al,O,-Cu-water
nanofluid within an L-shaped cavity. Their results indicated that the maximum sink strength led to the best heat
transfer performance. Hussain et al. (2023) analyzed MHD mixed convection and entropy generation of a non-
Newtonian hybrid nanofluid in a new corrugated-wall elbow cavity with a fourth circular hot block and a rotating
cylinder. Results showed that the Nu increased with increasing power-law index. Additionally, the heat transfer rate
increased with increasing aspect ratio. Nemati et al. (2023) calculated the lattice Boltzmann method entropy genera-
tion of hybrid nanofluids under the influence of different magnetic field types. Their results showed that increasing
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Re decreased the effect of increasing Ha on the average Nu. Mansour et al. (2024) evaluated the MHD unsteady
mixed convection heat transfer of a hybrid nanofluid in a corrugated porous cavity with thermal radiation. Their
results showed that as the heat source length and the number of waves in a porous medium with a hybrid nanofluid
(TiO,~Ag/water) increased, the average Nu increased. Moreover, increasing the nanoparticle volume fraction and
porosity improved heat transfer, while increasing the Ha decreased the average Nu. Table 3 presents a comparison of
recent studies (2020—present) for mixed convection of nanofluids in porous media, considering the aforementioned
parameters.

6.4 Other Research on Nanofluid Heat Transfer in Porous Media

Liet al. (2021) investigated the heat and mass transfer of a MHD nanofluid flow on a porous stretching. Their results
showed that as the Brownian motion parameter increased, the heat transfer rate was reduced. On the other hand, a
higher thermophoretic parameter led to a higher heat transfer rate. As Pr and Lewis number increased, Sherwood’s
number was also augmented. Farahani et al. (2021) investigated the influence of a magnetic field on heat transfer from
a channel with nanofluid flow and a porous layer configuration. Their results showed that the heat transfer rate was
higher in the central arrangement compared with the boundary arrangement. When the dimensionless thickness of the
porous medium in the central arrangement was 0.8, the heat transfer rate was at its peak. Conversely, the minimum
heat transfer rate occurred when the dimensionless thickness in the boundary arrangement was set to 0.6. Table 4
presents a comparison of recent studies (2020—present) for heat transfer of nanofluids in porous media, considering
the aforementioned parameters.

6.5 Overall Review of Papers

The primary objective of adding nanoparticles to a base fluid is to enhance heat transfer. Udoh et al. (2024) con-
ducted a study to enhance the performance of anticorrosive coatings by incorporating a base nanofluid into coatings
with a porous matrix, allowing for controlled release and self-healing capabilities. Porous matrices can improve heat
transfer; therefore, the base nanofluids within these matrices not only aid in corrosion protection but also enhance the
thermal properties of the coatings. Memon et al. (2023) found that adding a base nanofluid (CuO-H-0O) to a porous
medium significantly affects heat transfer. Increased nanoparticle concentration improves the Nu and heat transfer ef-
ficiency, whereas higher porosity of the nanofluid reduces the Nu and decreases heat transfer performance. Farahani
et al. (2023) investigated the thermal performance of microchannel heat sinks. Their study shows that incorporating
nanoparticles into water and PCMs can reduce thermal resistance (R) and increase the thermal performance enhance-
ment factor (TPEF). In particular, combining PCM with aluminum oxide and iron oxide nanoparticles provides the
greatest improvement in TPEF. Additionally, using a porous medium alongside PCM can reduce thermal resistance by
approximately 60% and enhance thermal performance. Table 5, a summary of Tables 1 through 4, presents the increase
in the Nu in nanofluids under various conditions, including different volume fractions, Re, Ra, and Da. From this table,
the following can be inferred:

*  The Nu exhibited a significant enhancement with increasing Ra and nanoparticle concentration. For instance,

at the highest Ra value, the Nu improved by up to 65%.

«  For an Ra of 107 the Nu for a silver—water nanofluid increased by as much as 9.5%.

*  Adding nanoparticles improved the Nu by up to 21%.

e Inatriangular tube with a Re of 13,000, the Nu increased by 54.83%.

*  ForaRa of 10° and a nanoparticle concentration of 0.05%, the Nu reached 9.76.

e For the Da of 10, the Nu varied between 1.25 and 7.0.

*  The Nu increased with an increase in the Gr from 150 to 450.

*  The Nu was observed to decrease by up to 50.48% with increasing Ha.

e The Nu improved by 20% to 70% as different nanoparticles were added.

Hence, higher nanofluid concentrations and Ra are correlated with substantial enhancements in the Nu. Con-
versely, as the Ha increases, the Nu tends to decrease.
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TABLE 5: Impact of nanofluid concentration and size on Nu: statistical analysis and literature review

Ref. Nu Volume fraction and size
(Martin et al., 2021) Nu improves 65% at max Ra 2.35x10°<Ra<5.13 x 107,
0% <p<5%
(Miles and Bessaih, 2021) For Ra = 10° the best Nu for Ag— 0<¢=<0.01;
water reaches 9.5% 104<Da<10"!
0.2<€<0.99

(Mehryan et al., 2020)

at Ra=10°and ¢ = 0.05; Nu is 9.76

0% < ¢ <5% 0.2 < Stefan number < o

(Esfe et al., 2022)

Nu increase with increasing Ra

10°<Ra<10%0%<0<3%

(Tan et al., 2023)

Nu drops by 50.48% with increasing
Ha

0<Ha<50;0<¢<20

(Alilat et al., 2023)

Nuavg enhancement varies between
20% to 70%

0% <0 <3%;3.32x10°<6.7 x 107

(Soleymai et al., 2022) Nu increase 21% by adding 0.2<e<0.8;

nanoparticles 0<¢=<0.025
(Wang et al., 2021) Nu increase 54.83% for Re = 13,000 0 < Nu <300;

in triangular tube 6000 < Re < 36000
(Sivasankaran et al., 2022) Nu increases from 150 to 450 (inRe 0.1 <Gr<0.3;

= 4000 to 13,000) 0%=<Q, <5%
(Yeasmin et al., 2022) Nu, for Da=0.0001 is from 1.25 0<¢=<0.01;

to 7.0 0.05<¢<0.8

6.6 Statistical Results

This section provides a statistical analysis of parameters reported in studies concerning nanofluids within porous me-
dia. A comprehensive literature review indicates that aluminum oxide nanoparticles suspended in water constitute the
most frequently investigated nanofluid, comprising 28.33% of the analyzed research. Copper and iron oxide nanoflu-
ids in water follow as the second and third most common nanofluid types, representing 25% and 8.33% of the studies,
respectively. A detailed breakdown of nanofluid share in the literature is presented in Table 6.

Alumina nanoparticles are widely employed due to their superior dispersion capabilities within base fluids. How-
ever, the stability of nanofluids within porous media is a paramount consideration. Metal oxide nanoparticles exhibit
inconsistent influences on free convection heat transfer, with enhancements observed in some studies and reductions
in others. Conversely, nanoparticles of all types generally augment heat transfer in forced convection environments.
Cylindrical geometries were the most prevalent configuration studied, accounting for 27.78% of the research, fol-

TABLE 6: The share of each nanoparticle in published studies

Nanoparticle Share (%)
Al O,~water 28.33
Cu—water 25
Fe,O,~water 8.33
TiO,~water 10
Ag-Mgo 5
Other 23.34
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lowed by hole and circular geometries at 14.81% and 7.41%, respectively. A detailed overview of these findings is
presented in Table 7.

Figure 6 presents a comparative analysis of models used in the reviewed studies. The Darcy—Brinkman
model is the most frequently employed, accounting for 33% of the research. The Darcy—Brinkman—Forchheimer
model follows with a 27% share, whereas the Darcy model represents 13% of the studies. These findings un-
derscore the dominance of the Darcy—Brinkman and Darcy—Brinkman—Forchheimer models within the field of
research.

Tables 1 through 4 suggest that MHD models constitute 39% of the models employed in studies involving mag-
netic fields. Figure 7 provides a breakdown of the contributions of major scientific publishers (i.e., Science Direct,
Springer, MDPI, John Wiley, and ASME) to the research domain. Science Direct emerges as the predominant publish-
ing platform, contributing 76% of the analyzed publications.

TABLE 7: The share of each of the studied geometries in published papers

Geometry Share %
Square 7/4
Hole 14/81
Circular 7/41
Cylindrical 27/78
Cone 5/56
Other shapes 37/04

darcy-fo,

u darcy = darcy-brinkman = darcy-brinkman forchheimer = non-darcy = brinkman = darcy-forchheimer

FIG. 6: The share of the models used in the presence and absence of a magnetic field
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The statistical analysis focused on parameters identified by authors as critical to heat transfer: nanoparticle type
and geometric configuration. Given the prevalence of numerical modeling in the reviewed literature, the employed
porous media flow models were also examined. Although not directly related to heat transfer, the impact of external
forces, such as magnetic fields, on heat transfer is well established. Consequently, the inclusion of MHD models,
comprising approximately 39% of the studies, was considered relevant to the overall analysis.

7. CONCLUSION

This study reviewed the literature published since 2020 on nanofluid heat transfer in porous media. Expanding on
a previous review (Nabwey et al., 2023), this research employed a novel statistical approach to analyze recent ar-
ticles. Results indicated that adding nanoparticles to the base fluid enhances heat transfer. However, increasing the
nanoparticle volume fraction intensifies the viscosity effect, which can hinder heat transfer despite improved thermal
conductivity. Moreover, an increased nanoscale conductivity relative to the porous matrix leads to decreased heat
transfer. Conversely, heat transfer improves with increasing Da and porosity. These findings highlight the complex
interplay between nanoparticle concentration, viscosity, and porous medium properties in determining heat transfer
performance. The most significant findings of this study are as follows:
e The highest heat transfer coefficient and Nu for the nanoparticles were observed at a 30° angle with a square
porosity, whereas the lowest values were recorded at a 0° angle.
* Inforced convection, heat transfer was enhanced with increasing Ha and porosity. For instance, in a tube with
a porous hemisphere, increased porosity (up to 0.8) and Ha increased the Nu.
*  For hybrid nanofluids in a porous medium filled with TiO,-Ag-water, increasing the length of the heat source
and the number of waves improved the average heat transfer, as indicated by the average Nu. Conversely,
increasing the Ha reduced the average Nu.

=Science Direct *John Wiley * AJSE “ASME ®*MDPI =Springer

FIG. 7: The contribution of each publisher of the published papers related to nanofluids in a porous material
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The results indicate that parameters such as the type and volume fraction of nanoparticles, the geometry of the
porous medium, and the application of magnetic fields significantly enhance heat transfer.
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